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Preface and Prerequisites

Download PDF of Entire Textbook
Many of us are familiar with the idea of making a list of “pros”

and “cons” to help us make a choice, particularly important and
complex ones. Presumably, this kind of strategy reflects our desire to
make the “right” choice. Or maybe there isn’t a single correct choice
to make, but at least we want to examine our options so that we can
provide a kind of justification for what we end up deciding to do. In
other words, one purpose of a pros-and-cons list is that we can pro-
vide reasons for our choices. Decision theory is the field that examines
a whole array of decision making strategies that explain and justify
choices, even if the consequences don’t work out as expected.

0.1 What is a conceptual introduction?

This book is a conceptual introduction to decision theory. As such,
there are several features that differentiate it from other introduc-
tions. First, while it draws heavily on philosophical approaches,
many of the concepts are also informed by other disciplines. So when
it will benefit our understanding of a concept, we will not hesitate to
venture into areas such as psychology and economics.

Second, the concepts we cover will be used to build models of
decision-making. In this sense the “theory” that we aspire to is not
so much a thesis about what rational decision making is. Rather,
our “theory” is more akin to a collection of tools that can be used
for doing analysis. That is not to say, however, that we will eshew
normative claims. We will find ourselves in plenty of places where
we’ll use claims about rationality and irrationality, and in turn the
concepts we have will help us better understand those notions.

Third, there is a great deal of conceptual overlap between fields
such as game theory, social choice theory, behavioral economics, and
traditional decision theory (or decision theory “proper”). The differ-
ences between them is largely about the domains of decision making:
game theory focuses on strategic decisions between multiple agents;
social choice theory is about how to aggregate preferences of individ-
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uals to the level of the collective; behavioral economics emphasizes
empirical studies to develop a non-ideal decision theory; and deci-
sion theory “proper” is typically the idealized study of rationality
and its normative consequences. But there are many concepts that
appear across several of these domains. Rather than take a domain as
a starting point and cover the concepts needed to understand the the-
ories in those domains, we will start with concepts and then illustrate
how they are used in some of these domains. That said, we will not
aim to be exhaustive of where the concepts are used. The goal is for
the reader to appreciate the utility of the concept and get a feel for its
connections to domains outside traditional decision theory.

Fourth, to the end that we focus on concepts, we will start with
bare bones. The concepts will be initially crude. At first we will use
them to get some basic models of decision-making, many of which
will resemble overly simplified (“toy model”) decisions rather than
real-life decisions. Then we will advance in one of two ways. Some-
times we will advance by adding one or more new concepts and then
explore how that helps us develop more sophisticated models. Other
times we will refine one or more of our existing concepts and see
how that changes our models and interpretations of them.

Fifth, and finally, the goal of a conceptual introduction is to max-
imize accessibility. That said, it will become necessary at some point
that to clarify a concept we will have to use some tools of rigor. Most
readers will be already familiar with most of these: how to read a
table or matrix, executing basic algebraic operations like addition and
multiplication, how to read a graph that plots a function, etc. Other
tools, notably some basic probability theory, readers are not expected
to know. We will prefer, whenever possible, to make a concept clear
without the use of formal tools. Where this is not possible, the rele-
vant representations will be introduced as if the reader is seeing them
for the first time.

The most rudimentary tools we start using early on include tables
and orders of operation of addition and multiplication. Readers well-
versed in these may skip to the first chapter.

0.2 How to read a table or matrix

This books make very few assumptions about the reader’s back-
ground knowledge. This book makes frequent use of tables, or some-
times called matrices (“matrix” for a single one). So it’s worth getting
clear on the parts that make up a table. The basic setup is a grid,
with horizontal lines (left-right) and vertical lines (up-down). Some-
times the lines aren’t shown because it looks clearer. In that case we
make sure to organize text in a way that lines up as a grid.
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The horizontal regions are called rows and the vertical regions are
columns. A cell is where a row and a column intersect. The cells in
the very first row usually contains information about the names of
the columns (this first row is often called a header). The cells in the
very first column typically have the names for the rows. Because the
first row and first column are being used to label or name the rest of
the row or column, they aren’t included when we count the number
of rows (or columns) of a table. Below is an example. Notice that the
whole grid is made up of three rows and three columns, but because
the first ones just have names, the counting starts at the second row
and column of the grid.

Table 1: Example of a two-by-two table with names for rows
and columns. The name “Row 1” refers to the horizontal region
to its right and consists of Cell(1,1) and Cell(1,2). The name
“Column 1” refers to the vertical region below it and consists of
Cell(1,1) and Cell(2,1).

Column 1 Column 2

Row 1 Cell(1,1) Cell(1,2)
Row 2 Cell(2,1) Cell(2,2)

0.3 The Very Basic Math

The math that we will use is itself not advanced. It basically amounts
to the operations of addition, subtraction, and multiplication (and in
a few exceptions division). But what can become a bit tricky is the
“book-keeping” of it all. This book will generally show all the work
so that you can follow the order of operations.1 1 If you need a refresher, do some

practice problems.

0.4 Inspiration and Acknowledgments

This text is inspired by two freely available sources.2 One is the open 2 Students, you can skip the rest of this
and move to the first chapter.access book Odds & Ends: Introducing Probability & Decision with a

Visual Emphasis by Johathan Weisberg https://jonathanweisberg.

org/vip/. The second is Brian Weatherson’s Decision Theory Book
http://brian.weatherson.org/424/DTBook.pdf. There is a great deal
that I like about both of these, but they did not quite fit the needs I
had when teaching an introductory course on decision theory. While
both are relatively approachable, I wanted to emphasize some of the
concepts that I thought students are most likely to remember. Most
of my students shy away from technical material. My goal was to
assume as little as possible and very gradually introduce them to

https://g.co/kgs/mhz72v
https://jonathanweisberg.org/vip/
https://jonathanweisberg.org/vip/
http://brian.weatherson.org/424/DTBook.pdf
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the formal methods needed, and only when needed.3 I also wanted 3 I am happy to receive feedback on
places where this can be improved:
bbaum@uidaho.edu

to emphasize related topics, such as a broader conversation about
the nature of utility and the perspectives of behavioral economics,
both of which are understandably not given much attention in more
standard philosophy texts.

On the technical side of things, this book was made using the
bookdown package created by Yihui Xie [@xie2015] and inspired by
the formatting aesthetics of Tufte.

Thanks to an Think Open Fellow Award funded by the University
of Idaho Library. I had important help in creating this from Marco
Seiferle-Valencia and Evan Williamson.

Substantial comments and feedback were provided by students
in Decision Theory 2020, including in particular Trevor Woodward,
Jackson Ogden, Amanda McClurkin, and Lauren Moon. I also re-
ceived helpful feedback from the University of Idaho CLASS book
club.

mailto:bbaum@uidaho.edu


1
Introduction

Our actions are the consequences of our beliefs blending with our
desires. I buy some ice cream because I have a desire for something
sweet and believe that ice cream is a good means of satisfying that
desire. I take the train to shop downtown because I believe the train
is an efficient means of transporting me there and I want to purchase
some things. This way of talking about our actions and choices is
sometimes called “belief-desire psychology” and it is a helpful big-
picture way of dividing up the parts that make up a decision: we
consider a set of possible actions and do the action that best com-
bines our beliefs and desires. If I don’t believe the train will get me
downtown, or if I don’t want to go shopping after all, I won’t take it.1 1 In this way our beliefs are like bets

on what the world is (going to be) like.
Frank Ramsey (1903-1930), a founder of
modern decision theory, suggested this
kind of picture.

This picture is misleadingly simple. This chapter gives some brief in-
troductory concepts to refine our understanding of decisions so that
we can, over the course of this text, improve our analyses of them,
and hopefully improve them.

1.1 Some Basic Conceptual Ingredients

Let’s start with an example. Suppose you’re thinking about how to
spend your Sunday afternoon. You’ve got a project due on Mon-
day, a project that you get at least some enjoyment out of working
on. If you had to, you know you can get the project done quickly,
but the time crunch would suck the enjoyment out of doing it. You
also know that if you go to the park there will be a pick-up game of
frisbee. Your favorite pick-up games have a mix of friends and new
people, but you really don’t like it when that annoying guy shows
up. If you went to the park and a game never came about, or that an-
noying guy showed up, you’d regret not having spent your afternoon
working on the project.

A decision table (or decision matrix) can help us organize the
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above example.2 We use rows to lay out your choices, the options 2 A decision table uses rows for possible
actions and columns for possible world
states.

you are considering. In this case the choices you’re thinking about
are going to the park or working on your project. We use columns
to represent features that are outside of your control, what we call
states of the world. Using the above example, let’s say the possible
states of the world are a fun game of frisbee and a game of frisbee
with annoying guy. The cells of the matrix are called outcomes and
we can insert numbers to indicate how much you like each outcome.
Let’s assume that higher numbers mean that you like that outcome
more. Here’s one example of a decision matrix (we’ll sometimes call
it a “decision table”).

Fun Game Annoying Guy

Go to park 4 1

Work on project 2 3

Here’s how to interpret this basic 2x2 decision table.3 There are 3 Not every table is a decision table, so
pay careful attention to what a table is
intended to represent.

two options represented in the rows and two world states repre-
sented in the columns. Each number in a cell represents how much
that outcome is liked relative to the other outcomes.4 Here, the out- 4 In general, the number in a cell by

itself doesn’t tell us anything; it is in
comparison with other cell numbers
that we get information that decision
theory makes use of.

come in which you choose to go the park and the frisbee game turns
out to be fun has the highest number (4) and so is the most preferred
outcome. The least liked outcome is the one where you choose to go
to the park and annoying guy shows up and ruins the game (1). The
outcome where you chose to work on the project and you find out
later that annoying guy did not show up and your friends had a fun
game is better than the worst outcome (because 2 is higher than 1),
but it’s worse than the outcome where you worked and annoying
guy showed up (because 2 is lower than 3).

Why do we have this order of preferences for the outcomes? There
could be a variety of reasons. Maybe if you’re working at home on
your project, you’d rather find out that annoying guy was there.
After all he’s a pretty good player and your friends don’t mind him
as much as you. Or perhaps your friends find you more annoying
than annoying guy and you recognize this. Whatever the reasons,
the decision table does not represent those details. The table just
represents the outputs in terms of ordering the preferences, using
higher numbers to indicate more preferred options.

Preferences can differ. For example, you might think it’s better that
both you and annoying guy didn’t show up than the outcome where
only you didn’t. (Perhaps you are less annoying than annoying guy
after all!) To represent this, we would change the numbers in the
bottom row of the matrix:
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Fun Game Annoying Guy

Go to park 4 1

Work on project 3 2

Note that both matrices represent just how much you dislike an-
noying guy: your most preferred outcome is where you go to the
park and he’s not there, but if he does show up you’re now in your
least preferred outcome. In fact, in both matrices you’d rather be
working on your project then go to the park where he shows up. But
in his absence you have a fear of missing out and you’d rather go to
the park than work on the project.

This example illustrates the first set of concepts we will use to start
modeling decisions. In the simplest decision we need to have at least
two choices and two states. Sometimes we’ll call a choice an option
or an action that you can pick. We’ll use these terms interchangeably
until we need to be more precise. The variables a, b, c, and d are the
numbers used to measure how good the outcomes are. We will have
much to say about these in what’s to come.

State 1 State 2

Choice 1 Outcome a Outcome b
Choice 2 Outcome c Outcome d

Real life decision-making often has more than two choices. To
represent that we would add more rows, one for each choice. Simi-
larly, there can be more than two world states, and so we would add
more columns. The number of choices need not match the number of
world states.

Sometimes the states of the world will depend on the actions of
others, sometimes not. In our example, the state where annoying guy
shows up to the park is itself an outcome of a decision that annoying
guy made. For all you know, he might find you really annoying and
is making similar considerations about whether he should stay home
and work on his project. Ideally you could coordinate, so that you
alternate from one week to the next so you don’t have to see each
other. Decisions where the outcomes depend in large part on the
choices that others make fall under the field of Game Theory. A classic
example of this would be Rock, Paper, Scissors. Let’s say it’s 0 for a
tie, -1 when you lose, and 1 when you win. We can use the matrix
representation to organize the options, states, and outcomes. Suppose
you are playing with your friend Joe.
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Joe plays Rock Joe plays Paper Joe plays Scissors

You play Rock 0 -1 1

You play Paper 1 0 -1
You play Scissors -1 1 0

Sometimes decisions are made by aggregating choices or prefer-
ences. For example, your friends may take a vote for who is more
annoying, you or annoying guy. Elections are another example of
how a group decides who the next political official will be. The study
of how to aggregate lower-level decisions into higher-level decisions
is known as Social Choice Theory.

Many of our decisions don’t depend on the strategies of others,
nor are aggregates. Many decisions either don’t involve other people
at all, or the actions of others are largely independent of yours (and
vice versa). For example, your going to the park to play frisbee may
be primarily concerned about whether it will rain or not. Whether
you decide to learn to play an instrument may depend primarily on
whether you think you will enjoy it. The decision to have children
may largely consider the type of experience you can expect to have
in a parental relationship. Choosing to go in for surgery will depend
a lot on the likelihood of success. Buying some new hand cream
will depend on whether you think the cost is worth the amount it
improves your dry skin.

As you might guess, not only can decisions be complex, but the
study of decision making is itself complicated. In fact, decision the-
ory broadly construed is an interdisciplinary field, involving re-
searchers from areas such as philosophy, psychology, political sci-
ence, economics, computer science, and business. It is a rich and
diverse field, but we have limited time and space. So we’re going to
approach the topic of decision-making from a mostly philosophical
perspective that emphasizes the concepts used to model decisions.
But we won’t shy away from making connections to other areas or
from dealing with messy topics. Perhaps the messiest of all is about
rationality, which we’ll briefly cover next.

1.2 Rationality - the Descriptive and Normative

A descriptive theory is an attempt to characterize how decisions
are made in the real world. It draws heavily on sciences that are
traditionally empirical, including psychology and economics. There’s
a entire subfield devoted to it called behavioral economics. And
perhaps surprisingly, there’s a subfield in philosophy too that uses
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empirical methods under the rubric of experimental philosophy.
Descriptive decision theory is interested in explaining how humans
make decisions.

A normative theory aims to provide prescriptions of what people
ought to do as rational agents.5 Failing to meet the prescriptions of a 5 Sometimes “prescriptive” is used

instead of “normative” - we’ll use these
terms interchangeably.

normative decision theory means running the risk of being labeled
irrational. Less harshly, if we fail to meet the conditions of rationality,
we shouldn’t be surprised if our choices and lives don’t go as hoped.
Normative decision theory is interested in decision making that is
justifiable.

Both descriptive and normative decision theory provide impor-
tant contributions to our understanding of decision making. The
normative side allows us to make recommendations of how to make
decisions and can provide guidelines for attributing responsibility
when someone fails to meet the ideal - we might for example want to
be able to say when someone is making bets that they shouldn’t be.
On the other hand, we often will want to provide an explanation of
how someone came to a decision, even if it failed to meet the ideal.
Why did Jodie think (mistakenly) it was a good idea to keep betting
on the horse that kept losing? Here we are asking for an explanation
of Jodie’s thinking, not for a justification of it.

While it may seem that we can carve decision theory into these
two sub areas, the truth is that they very much inform one another. A
commonly held principle is that “ought implies can’ ’. For example,
if it is true that Sally ought to do her homework, then it is also true
that it is possible for Sally to do her homework. We can actually
restate this principle in a logically equivalent way (what logicians call
the contrapositive) as follows: if it is impossible for Sally to do her
homework (perhaps she is in a medically induced coma) then it is no
longer true that she ought to do it.6 So prescriptive demands on our 6 In general, the ought implies can prin-

ciple says that normative claims cannot
“outrun” what is possible.

decision making have to respect what is possible for us to do.
In brief, descriptive decision theory provides us with an under-

standing of what we do and what we can do with respect to making
decisions. On the other hand, what we do or can do is not necessarily
justified and the role of normative decision theory is to set up one
or more ideals by which we can compare what we do in order to
become better. There’s much more to be said about the interaction
between the normative and descriptive, but we’ll leave it at that for
now.

In both descriptive and normative decision theory, the notion of
rationality that is being studied is instrumental rationality.7 Here’s 7 “Instrumental” that is, in the sense of

means to some end, where the “end”
can vary across persons, groups, etc.

what that means. It is presupposed that agents have some aim or
goal. Decision theory is not about what aims we have - goals are so
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to speak “external’ ’ of the theory. Rather, decision theory is about
characterizing the process for how to best ensure that one’s goals are
satisfied. Some philosophers argue that rationality can go beyond just
what is instrumental, that is to say, that we can argue about which
goals are rational to have and which are not. John Rawls, for exam-
ple, argues that counting blades of grass on a courthouse lawn is sim-
ply not important enough to count as a rational aim. Other philoso-
phers argue that all rationality is instrumental, that the only way to
evaluate a goal is by looking at how well it does to satisfy some other
overarching goal. There is no way, these philosophers argue, to scru-
tinize the most fundamental or overarching goals. Most of decision
theory sidesteps this debate. It proceeds by asking how best to pro-
ceed given an aim, whatever that aim might be and whether that aim
is rational or not.

To study instrumental rationality is to study the process by which
we have the best chance to obtain our aims. It does not, however,
guarantee that those aims will be achieved. Recall that outcomes are
a combination of actions and things external to the decision that are
outside our direct control (states of the world). Consequently, this
means that the best decision could turn out to be the wrong one ret-
rospectively, and a second rate decision could turn out to be the right
one. These possibilities are by-products of the fact that decisions
often have to be made by a point in time. For example, while camp-
ing John may drink water that came from a filter that clears Giardia.
To the best of his knowledge the filter works and the alternative to
drinking the water is to get severely dehydrated. So it is instrumen-
tally rational that John drink the water. However, unbeknownst to
him, the filter has a manufacture defect. So the resulting beaver fever
suggests that his decision was not the right one - dehydration, while
uncomfortable, is easier to recover from the malladies of Giardia.
Note that the actual outcome does not change the fact that John made
the best decision given that the alternative was severe dehydration.
This is because decision theory operates on the basis that decisions
are made with information available by a certain time and not infor-
mation made available at a later point in time. Notice here the ought
implies can principle is at work: John can’t be faulted for not knowing
the future. This brings us to the topic of uncertainty.

1.3 Uncertainty

In some cases we know what the state of the world is or will be.
When we make decisions based on knowledge, it is called decisions
under certainty. For example, suppose you have $20 to spend on lunch
and you want pizza. You have stale leftover pizza at home, but it’s a
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little further away than Maialina, where the pizza is fresh out of the
oven. On the other hand, you don’t mind stale pizza. Most impor-
tantly, your preference for not spending $15 is much stronger than
eating fresh pizza and having to walk a little less further, so much so
that the other considerations are irrelevant to you. A first draft of a
decision matrix to model this decision might look like this:

World State

Go Home $20 in pocket and stale pizza
Go to Mailalina $5 in pocket and fresh hot pizza

If, as we supposed, the differeence between stale and fresh pizza is
negligible and your primary concern for your decision about what to
eat is money, then all that matters for this particular decision is your
preference regarding the outcomes. This helps to simplify our model
of the decision, because we just need a number for each outcome and
make sure that we give the higher number to the outcome we prefer:

World State

Go Home 2

Go to Mailalina 1

Clearly, you should go home and eat the leftover pizza, since 2 is
higher than 1.

Not all decisions under certainty are this simple. Suppose you
want to redecorate your living room. You aren’t going to buy any-
thing new, but you might consider removing some things (you’re not
attached to that painting you did in 9th grade anymore). What you’re
thinking about is how to optimize the location of the various pieces
you have. Optmization problems are typically examples of decision
under certainty. Construction companies do this. Even when they
know that the price of gravel from GoodGuysGravel is cheaper than
GreatGuysGravel, they have to combine that with knowledge about
their respective delivery charges. GreatGuysGravel delivery charges
may decrease the more gravel you order, so that higher quantities of
gravel turn out to be less expensive to get than the competitors, who
charge the same amount for delivery no matter how much gravel you
want. In brief, this is an example of decision making under certainty
because all the relevant information is known and the remaining task
is to minimize cost.

A lot of decision making happens when we have less knowledge
of the world. When we have some information about what will hap-
pen but it’s not perfect, this is called decisions under risk. An impor-



16 bert baumgaertner

tant feature is that we can assign probabilities to outcomes. The best
examples are in gambling where the possible states can be clearly
and carefully quantified. The probability of rolling two ones (Snake
Eyes) with a pair of die is 1/36 or 2.77%. We know this because we
can count all the combinations of rolling two die (there are 36) and
only one of them is a pair of ones. The probability of rolling a seven
is 16.67% because of the 36 possible combinations, in six of them the
two numbers add up to seven. Sometimes these kinds of situations
are called known risk since the outcomes are chancy, but we know
what those chances are.

At another extreme, we might have no information that helps us
assign probabilities to outcomes. These are called decisions under igno-
rance. I’ll sometimes refer to such situations as having unknown risk.
For most of us, the exact date of our death is like this, and many of
us would prefer to keep it that way. Another example could be the
outcome of telling a joke at a party with strangers. It might generate
big laughs, fall flat, or may even be offensive. Without information
about who these people are, you don’t know how to assign probabili-
ties to the outcomes.

The Allegory of Fortune by Dosso Dossi
(1486-1542). Fortuna (“Lady Luck”)
can bring good luck (fruit), but good
luck tends not to last (she’s sitting on a
bubble). She might also bring bad luck
(missing sandal). Chance (on the left)
is holding lottery tickets. Art critics say
Dosso Dossi believed life is a lottery for
everyone.

Lots of decisions are in between the extremes of known risk and
unknown risk (ignorance). That is, we have some information so that
we’re not completely ignorant, but we don’t have so much informa-
tion that we can carefully and explicitly assign probabilities. Some
presentations make a clear delineation between risk and ignorance,
and will sometimes call the latter cases of uncertainty. Here we’re
going to use decisions under uncertainty as an umbrella for the whole
continuum that goes from risk to ignorance.

1.4 Practical and Theoretical Problems

One of the riches of studying decision-making is that the same con-
ceptual tools can be applied to both practical and theoretical prob-
lems. Practical problems range from ones we experience in everyday
life to the kinds we see on game shows. Theoretical problems are
ones that no human is expected to actually face, but by thinking
about how someone in such a theoretical situation would solve the
problem we can better understand how to approach practical situa-
tions.

Monty Hall was creator and host of the
1960’s game show Let’s Make a Deal,
which was rebooted with Wayne Brady
(not pictured).

A famous practical decision problem is The Monty Hall Prob-
lem which is named after the host of the game show Let’s Make a Deal.
On the show there are three doors, one of which with a prize behind
it. You get to pick one of the doors. Let’s say you pick A. The host
now opens one of the other two door that you did not pick. But of
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course, the host doesn’t want to give away the game, so the door they
open will be empty. Let’s say they opened B and sure enough it’s
empty. Now the host asks, do you want to switch your choice to door
C or stick with your current choice of A? Take a moment to think
what you would do.

Most people have the intuition that switching your choice makes
no difference. That is, that both doors A and C have equal chances
of having the prize: each is 50%. That is even what many professors
of statistics and mathematics find sensible. But the right answer
is that you switch! After the host opens door B, you are twice as
likely to win the prize if you switch your choice to C than you are
sticking with your choice. The reasoning is subtle and we’ll need
to use concepts from probability theory, which we will get to soon
enough. But to give you a feel, ask yourself: if instead of three doors
there were 100 doors, and the host closed 98 of the doors, would
you switch your choice then? Or imagine two people playing the
game many times, one person that always stays with their choice, the
other always switches. Who is expected to win more often in the long
run?8 8 You can try out these strategies for

yourself HERE.

A famous theoretical problem is Newcomb’s Problem. Suppose
you are on a game show and there are two boxes in front of you: A
and B. The contents of box A are concealed, but box B is completely
transparent. Inside of transparent box B is $1000. The options you
are given might seem a bit strange, but this is what they are: take
the unknown contents of box A (this is called the 1 box option),
or to take the contents of both box A and box B (this is the 2 box
option). Here’s the twist, and this is what makes this a theoretical
problem. While the contents of box A are unknown to you, there is
an extremely sophisticated artificial intelligence that is very good at
predictions. We’ll suppose this AI has made perfect predictions ev-
ery time in the past. The game show host consults the AI and does
the following. If the AI predicts that you will pick the 1 box option
(i.e., you pick the unknown contents of A) then the host will put in
$1,000,000 in box A. If, on the other hand, the AI predicts that you
will pick the 2 box option, then the host will leave box A empty. All
of this was already done before you are presented with the options.
We can use a decision matrix to represent the example:

AI predicts two box AI predicts one box

One box (just A) $0 $1,000,000

Two box (A and B) $1,000 $1,001,000

Here’s one way of reasoning about what to do. The fact is that

http://www.rossmanchance.com/applets/2021/montyhall/Monty.html
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there’s either a million dollars in box A or there’s not, your choice
won’t make the difference. If there is a million dollars in box A, then
picking the two box option is better than the one box option. After
all, $1,001,000 is more than $1,000,000. If box A is empty, then the
two box option means that you’ll get at least $1,000, which is better
than $0. Either way, the two box option is better.

As compelling as that argument might be, here’s another line of
reasoning that gets us to the exact opposite conclusion. You know
that the AI has an incredible track record. Of the hundreds of people
on the game show before you, the AI has gotten all of the predictions
correct: those who picked the one box option got one million dollars,
and those who picked the two box option got one thousand dollars.
You want to be like those in the first group and get a million dollars
rather than those in the second. So, you should pick the one box
option.

Which of these arguments is better?
Earlier I claimed that thinking about theoretical problems can help

us approach practical situations. So, are there any applications of
Newcomb’s problem?

A central feature of Newcomb’s problem is that there is something
in the world that is tracking decision making processes that then
leads back into a decision problem. In the fantastical case it was an
AI making predictions. We can remove this fantastical part and think
instead of examples where there is a common cause between the
world being in a certain state and you making a choice. Let’s look at
a version of the example we started this chapter with.

One of the things that makes annoying guy so annoying is that
he loves to talk about the projects he’s working on, projects you just
don’t care about. Come to think of it, you realize that you are actu-
ally quite similar to annoying guy: You also like working on projects
and talking about them. That’s why your friends find both of you
annoying, especially if both of you show up. They don’t mind having
just one of you there, though (they have just enough tolerance for one
annoying person, say). We can set up a decision matrix that looks like
this:

Annoying guy stays home Annoying guy shows up

You stay home 2 0

You show up 3 1

If you knew that annoying guy stayed home, you’d prefer to show
up (3 is better than 2). If annoying guy showed up, you’d still rather
be playing in the park than be at home (1 is better than 0). That said,
if you both stayed at home, that would be better than both showing
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up (2 is better than 1). So what should you do?
Here’s one line of reasoning that resembles the argument for the

two box option above. Either annoying guy is going to stay home
or show up. If he stays home, you prefer to show up and play. If
annoying guy shows up, you still prefer to show up. So whether
annoying guy stays home or shows up, you prefer to show up. So
you should decide to go.

What the above argument does not consider is that annoying guy
is just like you. That means whatever you decide to do will be a
good prediction of what annoying guy decides to do. In fact, we
could suppose that his decision matrix is identical to yours, except
that in his mind you are the annoying one. It may help to explicitly
represent things from annoying guy’s perspective by transposing the
above table as follows.

Table 1.9: From the perspective of annoying guy, his table would
look like this.

e You_stay_home You_show_up

He stays home 2 3

He shows up 0 1

So here’s an alternative line of argument. Because of how similar
you two are, there’s little chance that one of you will show up while
the other doesn’t. In other words, it’s much more likely that you both
choose the same thing and you both show up or you both stay home.
You prefer the outcome of both staying home than both showing up
(2 is better than 1). So, you should decide to stay home, and that’s
likely what annoying guy will choose to do as well (since he’ll be
reasoning similarly). Your friends couldn’t be more pleased.

The key difference between these arguments is whether you are
using information about the decision you are making in assessing
the probabilities of the outcomes, or whether the probabilities of the
outcomes are independent of your choice.

Later on we will see how these arguments can be made more
precise. There will be two ways of specifying the probabilities of
outcomes, one that does not conditionalize on choices, and one that
does. In addition, we will see how the fact that this crossroad exists
at all means that the two most popular principles of decision mak-
ing can come apart even though they agree most of the time. One
is called the dominance principle and the other is called maximizing
expected utility. But let’s not get too ahead of ourselves. First we’ll
turn to some decision making concepts that rely on what we have
implicitly been assuming: that preferences form ordinal rankings.
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1.5 Summary

The most basic model of a decision has the following four ingredi-
ents:

1. At least two exclusive choices/options/actions, which we repre-
sent as rows in a table.

2. At least two states of the world (that are out of our control), which
we represent as columns.

3. Outcomes, the cells in the table.
4. Preferences, the numbers we assign to the outcomes, where higher

numbers represent outcomes we prefer relative to others.

Rationality can be understood descriptively and normatively.
Some decisions are made under certainty, but most of the ones

we’ll study are under uncertainty.
Decision theory, as we’ll study it, draws from both theoretical and

practical considerations.

Exercises

1. If there are two possible world states and three possible actions,
how many possible outcomes are there?

2. What are the rows in a decision table?

a. Things that you can control in the decision
b. Things that are outside of your control in the decision
c. Things you wish you could contorl but you can’t.
d. The outcomes of your decision.

3. Suppose Dr. Smith is conducting an experiment on whether
people prefer one marshmallow today or two marshmallows
tomorrow. Which of the following best describes the field that
Dr. Smith’s experiment is contributing to?

a. Descriptive decision theory, because Dr. Smith is getting infor-
mation about how many people choose the correct option: one
marshmallow today.

b. Normative decision theory, because Dr. Smith is using norma-
tive claims and testing which ones are true.

c. Descriptive decision theory, because Dr. Smith is collecting
information about how people make a choice between present
and future outcomes.

d. Normative decision theory, because there is no correct answer.

4. Normative decision theory aims to describe. . .
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a. how things are.
b. how things ought to be.
c. how decisions ought to be made.
d. how decisions are made.

5. You’re at the Kentucky Derby deciding on whether to bet on this
year’s favorite horse: The Decider. The probability of The Decider
winning is 1/7. Which of the following describes the kind of deci-
sion you’re considering and why?

a. Decision under known risk, since there is a body of evidence,
like past races, that supports the claim that the probability that
The Decider will win is 1/7.

b. Decision under unknown risk, since nobody can be certain that
The Decider will win.

c. Decision under certainty, since we know that the chances of The
Decider winning is 1/7.

d. Decision under unknown risk, since there is a larger body of
good evidence that the other horses haven’t done very well
when racing against The Decider.

6. In various forms of gambling like roulette or poker, one can assign
probabilities to the outcomes and make a prediction accordingly.
This is known as a. . .

a. Decision under risk
b. Decision under uncertainty
c. Decision under ignorance
d. Decision under the influence

7. You’re at a small funeral with people you know very well. You,
like everyone else, knows for certain that death is coming for us
all, but we are uncertain about when that day will be. You’re de-
ciding between three options: i) say some kind words about the
deceased, ii) say some honest but unkind words about the de-
ceased, and iii) say nothing at all. What kind of decision scenario
is this most like?

a. Decision under deceased influence.
b. Decision under certainty.
c. Decision under ignorance.
d. Decision under risk.

8. Suppose you are on a game show where they have the same setup
as Newcomb’s problem. The host has already consulted with the
devil and chosen to either put the money in Box A or not. Just
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as you are about to make your choice between the one box and
two box option, you happen to get a trustworthy glimpse of the
contents of Box A, which turns out to be empty. What option do
you pick?

a. Two-box option
b. One-box option

9. Suppose you are on a game show where they have the same setup
as Newcomb’s problem. The host has already consulted with
the devil and chosen to either put the money in Box A or not.
Just as you are about to make your choice between the one box
and two box option, you happen to get a trustworthy glimpse of
the contents of Box A, which turns out to have $1 million. What
option do you pick?

a. Two-box option
b. One-box option

10. True or false: in the Monty Hall problem, it’s essential to the puz-
zle that the host doesn’t want to expose the prize. If they didn’t
care about giving away the location of the prize, there would be no
reason to switch when they open door C.9 9 This question comes from Chapter 1 of

Jonathan Weisberg’s Odds and Ends.
11. A characteristic feature of game theory is what?

a. The rows are options that both you and someone else jointly
control.

b. The world states are the actions of someone else.
c. It is decision theory applied in the domain intellectual games,

including the solving of a Rubik’s cube.
d. Game theory is not a real thing. You made this up.



2
Ranking

This chapter will be on decision making that relies primarily on rank-
ing outcomes. So far we have been using numbers to represent how
much we like an outcome, where higher numbers represent outcomes
we prefer more than outcomes with lower numbers. More specifi-
cally, we have been using what are called ordinal utilities1 where all 1 Ordinal utilities make qualitative

comparisons (x is better/same than y)
but not quantitative comparisons.

we care about is whether one outcome is better, the same, or worse
than another outcome. That is, we aren’t paying attention to how
much more we prefer one outcome to another. We’ll get to that later.
For now, if there are four outcomes and we give the one we prefer
the most a utility of 4, we could have also given it a utility of 400. All
that matters for ordinal utilities is that they rank outcomes from best
to worse (with possible ties).

To get a feel for what decision making rules look like, we’ll start
with some simple ones. Because of their simplicity, they may not
seem like very plausible rules and so we won’t ultimately suggest
that these should be followed. But understanding what the simpler
rules get wrong is informative and will help us get a better idea for
who to develop more sophisticated decision making rules.

2.1 Maximin and Maximax

Suppose you’re a student that wants to have it all: you like going
to parties, but you also take your studies seriously. Tomorrow there
will be an exam, but you don’t know if the professor has designed
a difficult exam or an easy one. If you knew that tomorrow’s exam
were going to be an easy one, you’d prefer to go party, but if you
knew that the exam were going to be a difficult one, you’d prefer to
study and be prepared for it. And “all things being equal” between
partying and studying, you have a preference to study because you
can’t stand the thought of getting a C grade - which is a possibility
if the exam is a difficult one and you didn’t study. Your preference
assignment (pun intended) might look like this:
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Difficult Exam Easy Exam

Party! 1 3

Study! 4 2

What should you do?
Here’s one decision rule you might use: Maximax. Maximax is

a rule that says you should maximize the maximum outcome. The
maximum utility in the above table is 4 and is assigned to the out-
come in which you study and the exams turns out to be difficult. Of
course, you can’t control whether the exam will be a difficult one or
an easy one (that’s up to the professor), but Maximax doesn’t really
care. It just says you should pick the action that has the outcome
with the highest utility.

Maximax isn’t a very plausible rule if you care at all about risk.
It has you choose outcomes with the highest payoffs, but with com-
plete disregard for any possible outcomes with lower utilities. At a
horse race Maximax says to bet on the drunk horse that’s missing a
leg because the payoff would be so much bigger than any of the other
horses that clearly will leave the drunk one in the dust. Yes, it’s pos-
sible that all the other horses suddenly have heart attacks at the start,
but that possibility is so remote that you would be right to ignore it.
At the very least, we should be incorporating information about the
chances that the drunken horse will win, which are very, very low.
Maximax doesn’t do that. All that matters to Maximax is the size of
the payoff. Nothing else.

Maximin is a much better rule. Maximin says to choose the least
bad worst case scenario, i.e., maximize the minimum outcome. What
you do is find the worst case scenario for each option, and then select
the option with the least worst case. In the table above, the worst
case scenario for the Party! option is 1 and for Study it is 2. Since 2 is
greater than 1, Maximin says to study.

So far Maximax and Maximin agree, but they won’t always. For
example, suppose that your preference assignment is captured by the
following table:

Difficult Exam Easy Exam

Party! 1 4

Study! 3 2

Now Maximax and Maximin disagree. Maximax says to party,
since it has the outcome with the highest utility (4). Maximin, on the
other hand, says to study. Why? The worst outcome if you choose
to party is 1, while the worst outcome if you choose to study is 2.
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Between those two, 2 is better than 1, and that can only happen in the
choice to study.

Maximin is a pretty good rule if you are risk averse, that is, if you
are predominantly worried about decreasing negative consequences.2 2 The study of risk aversion is very rich

and we’ll return to this topic numerous
times.

Not everyone may be as concerned about risk aversion as others.
There are at least two ways of thinking about this. One is to under-
stand differences between people’s decision making as differences
in the rules or strategies they use to make a choice. Another way to
understand differences between people is to recognize differences in
people’s preferences. For example, if you’re of the mindset that “C’s
get degrees” and you really love to party, then you might set up your
preferences like this:

Difficult Exam Easy Exam

Party! 3 4

Study! 1 2

For someone with this preference assignment, both Maximax and
Maximin recommend that they should party. So the difference be-
tween why someone studies and why someone else parties might be
a difference in preferences, or it might be a difference in the decision
rules they’re using. We’ll turn to this point more shortly.

Maximin isn’t without its own limitations. It can’t, for example,
help us decide what to do in certain situations where there are ties
between outcomes across different options. Suppose someone is
indifferent between all outcomes except the one where they studied
and the exam was difficult. They might have the following preference
assignment:

Difficult Exam Easy Exam

Party! 1 1

Study! 2 1

Maximin doesn’t make a recommendation about what to do be-
cause there is a tie between the worst outcomes of the two options:
the worst in each case is 1. And yet, you might have the intuition that
someone with this preference assignment should choose to study.
But the reason, you might think, is not because they should use the
Maximin rule. Rather, it’s something about the relative comparison
between partying and studying across the different possible world
states. If you have this intuition, you’ll already have a feel for the
next decision making rule we’ll explore: dominance reasoning.
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2.2 The Dominance Principle

The dominance principle does a more sophisticated comparison
between options. There are two versions, a weak version and a strong
version.

Suppose there are two options, A and B. We say that option A
weakly dominates option B if, for every world state, A is at least as
good in its outcome as B. In other words, what we do is this. We
check every column to make sure that A is at least as good as B. If so,
then A weakly dominates B. If not, then A does not weakly dominate
B. Let’s look at same table again:

Difficult Exam Easy Exam

Party! 1 1

Study! 2 1

Under “Difficult Exam” the option to study is at least as good as
partying (2 is better than 1) and under “Easy Exam” the option to
study is also at least as good as partying (1 is the same as 1). So, by
the definition of weak dominance we just gave, the choice of studying
weakly dominates the choice to party. Notice that we are not doing a
comparison between options across two different states (e.g. bottom
left and top right), our comparisons are between options in the same
column.

The Weak Dominance Principle says to never pick weakly dominated
options. In the above table, studying weakly dominates partying, or in
other words, partying is weakly dominated by studying. So the Weak
Dominance Principle recommends that you do not party. Since there
are only two choices in our example, by the process of elimination
the only option you are left with is to study.

We say that option A strongly dominates option B if in every state
option A is strictly better in its outcome than B. Notice that in the
above table, while it is true that under Difficult Exam studying is
strictly better than partying (2 is higher than 1), the same is not true
under Easy Exam - here both options are equal. That means that
studying does not strongly dominate partying. So, it is possible that
an option can weakly dominate another, but not strongly dominate it.

But let’s suppose that the preference assignment was just a little
bit different for the outcomes under Easy Exam:

Difficult Exam Easy Exam

Party! 1 3
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Difficult Exam Easy Exam

Study! 2 4

Here the option to study both weakly dominates the option to
party, and it strongly dominates it. In fact, whenever an option is
strongly dominated by another option, it is also weakly dominated
by it.

The Strong Dominance Principle says to never pick strongly domi-
nated options. In the table just above partying is strongly dominated
by studying (which means partying is also weakly dominated by
it), so the Strong Dominance Principle says to not pick the option
to party. Here both the strong and weak versions of the Dominance
Principle agree.

Notice again that it doesn’t matter that the best outcome for par-
tying (3) is better than the worst outcome for studying (2). The two
options are being compared column by column (i.e. state by state).
Notice also that the Dominance Principle, or “dominance reasoning”,
agrees with the recommendations of Maximin and even Maximax.

2.3 More than two options and two states

The decision making rules we’ve explored so far can be generalized
to situations where there are more than two options. It can be helpful
here to think a bit more abstractly. Let’s say there are three options,
A, B, and C. And suppose there are two world states, 1 and 2. Then
we need a table with three rows and two columns. Finally, let’s fill in
the outcomes with the following utilities:

World State 1 World State 2

Option A 2 4

Option B 1 3

Option C 5 6

Here it becomes apparent why we stated the Dominance Princi-
ple the way we did. We said to never pick dominated options. Notice
we didn’t say “pick an option that dominates another option”. This
is because it is possible for an option to dominate another, but be
itself dominated by some third option. By saying “never pick domi-
nated options” we ensure that the option is not bested by some other
one. So while in the example above it’s true that A dominates B, it
is also true that A is dominated by C (i.e., C dominates A). Option
C, however, is not dominated by any other option. In fact, it’s the
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only option that isn’t dominated by another, and hence that is what
dominance reasoning recommends.3 3 You should make sure you can do this

reasoning on your own. It’s helpful to
focus on just two options at a time, and
then striking one out if it is dominated.

Notice that in this example all of our decision rules so far agree:
they all recommend Option C. But the reason for their recommenda-
tions are all different. For Maximax it is because C has the outcome
with the highest utility of 6. For Maximin it is because C has the least
worst outcome with a utility of 5. And for Dominance Reasoning it is
because it is the only option that is not dominated by any other. We
will leave it as an exercise to ponder whether these reasons can ever
make different recommendations.

You may also notice that none of the rules we’ve used are limited
to decisions that have only two world states. This is most obvious in
the case for Maximax: just look for the outcome with highest utility,
follow that row to the left, and then pick the option that corresponds
to that row. For Maximin you look for the lowest utility in each row,
and then pick the option that has the highest one of these. Domi-
nance reasoning is a bit more complicated, but not by much. When
there are two columns, you are comparing two options to see if one is
dominated by another, and you do this by checking the first column
and then the second. In a decision matrix that has three columns you
do the same thing, but you have to compare the two options in the
additional third column. In other words, each additional world state
means that you have to check an additional column when you’re
asking whether one option dominates another.

2.4 Non-Unique Recommendations

We mentioned earlier that there are at least two different explana-
tions for why two different people might make different decisions,
even if they have the same options and the same world states in their
decision tables. One explanation is that they could be using different
decision rules: maybe one person is using Maximax while another is
using the Dominance Principle. We know that these rules can make
different recommendations, so perhaps that explains the difference
in two people’s choices. (Question for reflection: can someone using
the Dominance Principle come to a different recommendation than
Maximin?)

Another possible explanation for differences in decisions is a
deference in preferences. We’ve seen this already as we considered
different preference assignments. For example, one student might
have the mindset that “C’s get degrees” and very much enjoy a good
party. So they might have their preferences like this:
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Difficult Exam Easy Exam

Party! 3 4

Study! 1 2

A student with this above preference assignment will come to the
conclusion that they should party, regardless whether they follow
Maximax, Maximin, or the Dominance Principle.

Another student might have post-graduation ambitions that re-
quire higher grades than C. Moreover, they might not be fond of
parties much anyway. So they might have a preference assignment
like this:

Difficult Exam Easy Exam

Party! 1 2

Study! 3 4

The student with this above preference assignment will come to
the conclusion that they should study, regardless of whether they
follow Maximax, Maximin, or the Dominance Principle.

In other words, the answer of what to do is not unique, even if two
people agree on a decision rule. Different people could have different
preferences, which can lead to different recommendations. So ratio-
nality, in so far as we have been considering dominance reasoning,
does not demand that we all make the same choice. But be careful,
that does not mean that we can choose anything we like without be-
ing irrational - we have to be mindful of what our aims or goals are.
For example, while it may be rational for the first student to go party
(after all, that’s what dominance reasoning tells them to do), it would
not be rational for the second student to go party. Our intuitive judg-
ment suggests this is because going to the party is at odds with the
goals of the more ambitious student. The dominance reasoning strat-
egy gives us the same result given that the preference assignment in
the second decision matrix reflects the aims of that student.4 4 This is what we had in mind by

instrumental rationality.Notice that dominance reasoning proceeds by comparing options.
We will see with other rules that there are alternative ways of making
comparisons. But at the heart of most rules is the idea that options
are assessed by how they are expected to perform relative to each
other. We will see scenarios where this feature of decision making
can get us into trouble and will try to find fixes for that.

It’s important that you don’t confuse the comparative nature of
decision making with relativism. Relativism is a position about the
nature of truth, particularly truths regarding ethical claims. While
there are some connections between the normative aspects of decision
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theory and the study of morality, decision theory makes no commit-
ments about the nature of truth. Well, almost none. We’ll get to that
later when we consider the nature of probability. But for now, make
sure that you recognize that while we are working with the under-
standing of rationality in the instrumental sense (what should you do
given some goals or preferences) that is not the same as relativism.5 5 Another helpful way of thinking about

the difference is that instrumental ra-
tionality still makes room for critiquing
decisions, while standard accounts of
relativism rebuff judgment.

2.5 Independence of Options and States

When we have been organizing our tables, we have been more or
less assuming that the world states are “out of our control” while the
options are the things that we can control by making a choice. That
is, we have been assuming that options and world states are some-
how independent of one another.6 This is a common assumption 6 These notions of control and indepen-

dence are central and we’ll return to
them again later.

that is made in decision theory. An outcome (a cell in the table) is a
combination of an action (a row) and something the world does (a
column). When we insist that states and options are independent,
then dominance reasoning seems pretty straight forward.

What if we weren’t so strict about such independence? What if we
don’t “factorize” the outcomes into the two separate components of
states and options? If we don’t, then we may find that dominance
reasoning isn’t as straightfoward as we might think. Here is an exam-
ple from Jim Joyce.7 Imagine you park your car in a sketchy neigh- 7 The Foundations of Causal Decision

Theory, pp115-6.bourhood and someone promises to “protect” your windshield from
harm. They offer their services for a mere $10. You know that those
who refuse this offer tend to find their windshield smashed, while
those who take it don’t. You also know it costs about $400 to replace
your windshield. We can represent this example of extortion with
the following decision matrix, where we’ve put the utility number in
front and the monetary cost in parentheses.

Broken Windshield Unbroken Windshield

Pay Extortion 1 (-$410) 3 (-$10)
Don’t Pay 2 (-$400) 4 ($0)

Let’s use dominance reasoning. This means that to decide what to
do, we check whether there is a unique option that is not dominated.
When we look at the state of Broken Windshield, the Don’t Pay op-
tion is better than Pay Extortion. When we look at the Unbroken
Windshield state, we again see that Don’t Pay is better than Pay Ex-
tortion. Because in each state Don’t Pay is better than Pay Extortion,
the Pay Extortion option is strongly dominated by Don’t Pay. There
are no other options and Don’t Pay is not dominated by any other
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option. So according to dominance reasoning, you should not pay the
extortion.

But wait. You know very well that if you don’t pay the extortion
then the most likely outcome is that you’ll find yourself with a bro-
ken windshield. You’re not really saving yourself $10 at all, you’re
effectively guaranteeing that you’ll have to pay $400. Between the
outcome of losing $400 and paying $10, you’d rather pay the extor-
tion. And so, you reason, you should pay the extortion.

What’s gone wrong? Dominance reasoning says you shouldn’t pay
the extortion money, but your own line of reasoning says you should.
Is the dominance principle a bad rule after all?

Part of what’s going on is how we’ve set up the decision matrix.
While the matrix sets up an outcome for not paying and having an
unbroken windshield, it’s less clear that this outcome is the result of
two independent components. In fact, there seems to be a causal rela-
tionship between the options and the states. The state of an unbroken
windshield will depend in part on whether you choose to pay the
extortion or not. What we want when we set up a decision matrix is
the following: outcomes should depend on the combination of a state
and a choice, but states and choices should not depend on each other.

Later we will see different ways of thinking about what it means
for states and choices to be independent, and some of them will lead
to different recommendations. For the time being, we will stick to
clearer cases where states are independent of options. In these cases,
dominance reasoning seems to align with our intuitive judgments of
what to do.

Here’s an example where worlds states are independent of op-
tions. Suppose your friends are trying to convince you to go camping
this weekend. You’re indifferent - you like staying home as much
as you like being with your friends when camping. Except when it
rains. You really hate camping in the rain and you’d much prefer to
stay home. Here’s a decision matrix set up for us.

Rain No rain

Go camping 1 3

Stay home 2 3

Following dominance reasoning, you should stay home because
that option weakly dominates the option to go camping. This setup
follows the above guideline that states should be independent of your
choice: whether you go camping or stay at home will not impact the
weather.

Here’s an example of how things can go wrong in our modeling
of a decision if we don’t pay attention to the guideline of keeping
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options and states independent. Suppose, as we have in many of our
examples, that you’ve got an exam tomorrow and suppose you’re
deciding whether to go to a party (and thereby not study properly)
or to study (and thereby not party properly). It may be tempting to
set up the states into Pass Exam or Not Pass Exam:

Pass Exam Don’t Pass Exam

Party! 4 (pass and party!) 2 (fail and party!)
Study! 3 (pass but no fun) 1 (fail and no fun)

Under this poorly created setup, you might reason that you should
go party, since for each state the option to party is better than to
study and therefore strongly dominates the option to study. This
setup, however, is poorly designed. There is a causal relationship
between studying and passing the exam, which means the options
and states are not independent in the above decision matrix. Again,
when we set up what the states are, we should think of them as those
things that are outside of our control, while the options are the things
that we do control. Passing an exam is something that you have at
least some control over, so it cannot be a candidate as a state in a
decision matrix.

We can rework the example like the way we started this chapter,
by understanding that the level of difficulty of the exam is up to
the professor, it is not in your control. Moreover, we supposed that
you’re uncertain about whether your professor will create a difficult
exam or not. Your choice to study or not will have an impact on the
outcomes in terms of the grade you can expect to receive, but your
choices are independent of the states (what questions your professor
chooses). By taking this kind of care in our setup, we then have the
kind of table that we started out with and that we can apply our
decision rules to. The only thing that’s left missing in this table is the
preference assignment, i.e. the ordinal utility that you would give to
each outcome to rank them from best to worst:

Difficult Exam Easy Exam

Party! (C grade and party!) (B grade and party!)
Study! (B grade and no fun) (A grade and no fun)

Exercises

1. Peter is considering two different lotteries. Lottery 1 costs $20

to play and there’s a one in a billion chance that he could win
the $1M prize. Lottery 2 costs $10 to play and there’s a one in
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hundred chance that he could win the $10k prize. Suppose Peter
chooses to play Lottery 1. Which of the following decision rules is
Peter most likely using?

a. Maximax
b. Maximin
c. Dominance (weak)
d. Dominance (strong)

2. Consider the following table where the world states (columns) are
the levels of difficulty of an upcoming exam and the rows are the
options you are considering on Thursday evening:

/ Very Hard Somewhat Hard Easy Exam

Party! 1 6 12

Study! 10 5 6

Call Family 3 4 5

• What does the weak version of dominance recommend?
• What does the strong version of dominance recommend?
• What does maximax recommend?
• What does maximin recommend?

3. Using tables like the ones in this chapter as a starting point, but
changing around numbers, see if you can think of examples of the
following:

• Is there an example of a preference assignment where Maximin
and Dominance Reasoning make different recommendations?
Why or why not?

• Is there an example of a preference assignment where Maximax
and Dominance Reasoning make different recommendations?
Why or why not?

4. Think of a decision you’ve made in the past, say like whether to
go to university or not. Make a table to represent such a decision,
providing what you took to be the options and states. Then plug
in numbers to rank the outcomes. Then apply the decision mak-
ing strategies from this chapter. What recommendations do they
make? Do they align with what you decided to do?

5. What kind of decision making strategy do you tend to use? Com-
pare and contrast your strategy with the ones we’ve covered in this
chapter.
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6. One benefit of differentiating between different kinds of decision
making strategies is that it can help us better understand other
people’s choices. Given the same decision matrix, two people
could come to different conclusions of what do simply because
of differences in their decision strategies. Think of an example of
how the strategies in this chapter could lead two people to come
to opposite recommendations, even if they agree on the same table.
Do some of these strategies have associations with psychological
dispositions, like people you consider to be more introverted vs
more extroverted?



3
Transitivity and Completeness

So far we have been using ordinal utilities to represent preferences,
without having said much about exactly what utilities are other than
we can rank them from best to worst (with possible ties). There are
different accounts of what preferences are, and we’ll get to some
details later. All accounts of preferences, however, seem to agree on
some core axioms - “obvious claims” - that govern preferences. We’ll
cover two in this chapter that apply to ordinal utilities. Other axioms
will require us to have covered the concept of probabilities and other
notions of utilities in more detail, so we’ll wait to introduce those
axioms later.

The two axioms we cover here are known as transitivity and com-
pleteness. Let’s use ice cream flavours to briefly illustrate these.
Transitivity says that if I prefer strawberry to chocolate, and I prefer
chocolate to vanilla, then I prefer strawberry to vanilla. Completeness
says that either I prefer strawberry to chocolate, or I prefer chocolate
to strawberry, or I’m indifferent between the two flavours. The same
goes when comparing these to vanilla.

Transitivity and completeness play important roles in thinking
about what preferences are, particularly in the context of using ordi-
nal utilities to rank things. In fact, they apply not only to the case of
individuals making decisions, but also in thinking about how to ag-
gregate preferences of individuals into a collective group preference.
There are several ways of doing that aggregation, like voting, but we
might think that some are better than others depending on how well
they reflect the preferences of individuals.

The thought is, preferences are or should be transitive and com-
plete, regardless of whether those preferences belong to an individual
or to a group. The very rough reason is that decision making seems
to require putting options into some kind of ordering (with possible
ties), and any ordering will satisfy both the transivity and complete-
ness axioms. The tools we have been developing won’t work without
being able to order things. But as we’ll see, there are independent
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arguments for transitivity and completeness that go beyond the con-
venience they provide for being able to use our decision theory tools.

3.1 Notation

It will help to have some notation to express transitivity and com-
pleteness more succinctly. Let’s say that ‘a ≻ b’ means that a is
wanted more than, or preferred to, b.1 If instead we want to say that 1 The symbol ‘≻’ is just like > except it

applies to preferences between objects
or outcomes, whereas > applies to the
magnitude of two quantities. But for
both symbols, imagine they are mouths
about to eat the preferred things.

b is preferred to a, then we would write ‘b ≻ a’. If we want to express
indifference between the two, because you’d be equally happy (or
sad) with one or the other, then we’ll say ‘a ∼ b’ or ‘b ∼ a’. In some
cases we’ll want to say that ‘a is at least as good as b’ and we’ll use
the notation ‘a ⪰ b’.2 2 You can read this as ‘a is strictly

preferred to or equally as good as b’.Here are the two axioms using this notation, using x, y, z as vari-
ables for outcomes (or objects).

Transitivity If x ≻ y and y ≻ z, then x ≻ z.

Completeness Either x ≻ y or y ≻ x or x ∼ y.

Notice that the axioms are stated in a way that leaves them am-
biguous to descriptive and normative interpretations. If the decision
theory we’re doing is descriptive, then these axioms describe real
decision makers. If the decision theory is normative, then these ax-
ioms describe ideal decision makers - how people ought to approach
decisions.

In the descriptive case, the transitivity axiom is false if John prefers
strawberry to chocolate and chocolate to vanilla, but prefers vanilla
to strawberry. In the normative case, we would say that John is not
being rational.

If John claims that he neither prefers strawberry over vanilla, nor
vice versa, and moreover that he’s also not indifferent to them, then
the completeness axiom is false under the descriptive interpretation.
In other words, completeness is false if strawberry and vanilla cannot
be compared. Under the normative reading, John is failing to be
rational: surely he’s at least indifferent to either flavour if he doesn’t
prefer one over the other!

This last point almost sounds like an argument for why we expect
people to have preferences that obey completeness - normatively, and
perhaps descriptively too. The arguments that we’re going to look
at are typically used for the normative interpretation of the axioms.
We’ll look at arguments for or against each axiom in more detail in
the following sections. But first, we need to understand a particular
kind of conceptual tool that is used in these arguments.
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3.2 Money Pump Arguments for Axioms

We might dig in our heels and insist that the whole point of calling
the above principles ‘axioms’ is that they do not require justification.
Most decision theorists, however, think we can do better than that,
i.e., we can provide arguments that justify the axioms.

Arguments for preference axioms tend to be pragmatic ones. Prag-
matic arguments show that if someone violates an axiom, then they
are guaranteed to lose in a decision problem - a decision problem
that ‘rational’ agents would not accept. One of the most famous prag-
matic arguments is known as the Dutchbook Argument which we’ll get
to when we cover the axioms of probability theory. When it comes to
axioms of preference, the type of argument we’ll see is known as a
Money Pump Argument.3 3 Some think that pragmatic argu-

ments are a weakness and it would be
preferable to justify axioms and other
principles in some purely theoretical
way. Others think that pragmatic ar-
guments are actually a strength of the
theory because it connects it to practice
and actions.

Here’s an example of a money pump argument. Suppose, contrary
to our definition, that a ≻ b and b ≻ a, which is like saying that John
prefers strawberry to vanilla, and also prefers vanilla to strawberry.
If you’re scratching your head as to how that’s even possible, good.
That means you’re getting the feeling of this very odd scenario, and
we’re going to turn that tension into an argument. Suppose that
John has some strawberry ice cream and you have some vanilla ice
cream. Since John prefers strawberry to vanilla, you offer John one
cent to trade. John accepts. In fact this is a good deal for him since
the one cent cost is negligible. Now that John has the vanilla and you
have the strawberry, you again offer John to trade for one cent. John
should again accept, since he also prefers vanilla to strawberry. Since
John’s preferences are such that a ≻ b and b ≻ a, you can ‘pump
money’ out of John over and over again by cycling back and forth
between his preferences. The pragmatic argument now says that this
is absurd. Surely even John should recognize his failure and give up
at least one of the two preferences.4 4 TODO: Make and insert a diagram.

The strategy behind money pump arguments is to build a se-
quence of trades where the agent accepts each one, but by the end of
the sequence of trades they are right back where they started, except
with less money. In John’s case, he started with strawberry ice cream,
made two trades, ending up where he started (with strawberry) but
with two cents less.

3.3 Arguments for Transitivity

It’s important to recognize that not all relations are transitive. ‘Birth
mother’ is not transitive: If Sally is the birth mother of Laura, and
Laura is the birth mother of Jill, it is not the case that Sally is the
birth mother of Jill. Another example of a non-transitive relation is ‘x
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is a better team than y’. It is not uncommon that team A wins a game
against team B, that team B wins against team C, but also that C wins
against A. On the other hand, ‘is taller than’ is transitive: if John is
taller than Bob, and Bob is taller than Paul, then John is taller than
Paul.

Decision theorists claim that preferences are transitive. That is,
whenever there are two preferences, x ≻ y and y ≻ z, then there is a
third, x ≻ z. If preferences are transitive, then it serves as a reason for
avoiding the following money pump decision scenario.

Let’s say, contrary to the transitivity axiom, that John’s ice cream
preferences are such that S≻C, C≻V, and V≻S (where ‘S’, ‘C’, and
‘V’ stand for strawberry, chocolate, and vanilla, respectively). We’re
going to set up a sequence of trades that John should accept, but
land him in the same starting position, except with less money. Say
John starts with chocolate. Then since S≻C, he’ll accept a trade for
strawberry for a very small price, say one cent. Now with strawberry
in hand, John would also accept a trade for vanilla, especially if this
trade is free. Finally, John should also accept a trade back for choco-
late, especially if, again, it’s free. Now John is back in the original
starting place (with chocolate), except with one cent less. We could
also have charged John a small for the other two trades, or for any
one of them - it doesn’t matter so long as some cost, no matter how
small, is charged somewhere along the way. Since the sequence of
trades takes us back to the same starting condition, we can repeat the
sequence again, and thereby ‘pump’ money out of John indefinitely.5 5 TODO Make and insert a diagram.

Compare Sally to John. She also holds that S ≻ C and C≻V, but
contrary to John, her preferences are consistent with the transitivity
axiom and she holds that S≻V. So, like John, she would accept a
trade for chocolate if she had vanilla, and she would also accept
a trade for strawberry if she had chocolate. But unlike John, she
would not trade for vanilla if she had strawberry, because that is
the opposite of her preferences given that they are transitive. Sally
thereby avoids the money pump scenario. Because Sally’s preferences
are transitive, she breaks the cycle that John cannot.

The transitivity axiom for decision theory claims that preferences
are transitive. What it says is that some ordering of preferences are
to be excluded, namely those that are not transitive. It is this ability
to exclude non-transitive preference orderings that provides a rea-
son for avoiding the type of money-pump scenario just described. A
non-transitive preference ordering either has no reason for avoiding
the scenario (which seems bad) or at the very least has the burden
to provide some other reason. A person like John might foresee
how they’re going to be money pumped and decide not to accept
any more trades. But that alone seems like a poor reason, since it
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acknowledges the badness of the consequences of non-transitive
preferences, without suggesting an alternative. The burden falls on
them to provide an explanation of how they can avoid being money
pumped. That’s why money pump arguments are pragmatic - it is a
kind of burden shift, rather than a proof that no other reason exists.

3.4 Arguments for Completeness

Our ice cream example makes completeness seem almost trivial: ei-
ther strawberry is preferred to chocolate, or chocolate is preferred to
strawberry, or one is indifferent between the two. But the complete-
ness axiom doesn’t just hold for ice cream flavours, it holds for all
objects and options that we can have preferences over.

It is often said that you can’t put a price on a human life. In our
way of putting it, that means for any given dollar amount x and for
any life l, it is neither the case that x ≻ l, nor l ≻ x, nor x ∼ l. This
claim is saying that money and lives are not comparable. That is,
they are incommensurable.6 6 Arguably there are word meanings

that are incommensurable across lan-
guages. For example, some have argued
that there is no translation in English of
the German word ‘Weltanschauung’.

The completeness axiom says that you can compare money and
lives. We might not like it, but the completeness axiom says it can be
done. If government decision making is any indication, the complete-
ness axiom is probably correct, though no politician would probably
admit it. Here’s a brief reason to think that governments do, at least
implicitly, compare lives and money. If a citizen is lost at sea, for ex-
ample, we may be willing to pay out a lot of money to organize a
search and rescue party. Surely, however, there is a limit to how much
money we would be willing to put up. Maybe we’d pay a million, or
even more, but surely there is an upper bound, some value where,
though it pains us deeply to have to admit it, the life is not worth
the inordinate cost. While this example may be extreme, more route
examples abound. Decreasing speed limits on highways would save
lives, but people save time by driving faster, and that time can be
used for work or leisure - and either way we can put a dollar amount
on that. So the decision of where to set a speed limit is implicitly
comparing lives to other things, like time and money.

Examples aside, there is a money pump argument for the com-
pleteness axiom. Not everyone finds it as compelling as the money
pump argument for transitivity, but nevertheless, here it is. Suppose
there are two objects, x and y that are said to be incommensurable.
In addition, suppose that y+ is just like y but is strictly preferred to
it.7 Because y+ ≻ y, a small cost would be acceptable to trade y in 7 Think of + like a small bonus.

order to get y+. If we accept that it is permissible to swap incommen-
surable objects, then the money pump argument is up and running:
start with x, swap for y, now pay to get y+, then swap back for x,



40 bert baumgaertner

which is where we started.8 8 TODO Make and insert diagram

This money pump argument isn’t quite as compelling because
it relies on the assumption that incommensurable objects can be
swapped. One might try to argue that incommensurability is sup-
posed to be conceptually distinct from indifference. If we are indiffer-
ent between two objects, then it seems perfectly fine to swap between
them. But the main thrust of saying that two objects are incommen-
surable is to say that is not straightforwardly permissible to swap
(note this is not quite the same thing as saying that it is impermissi-
ble).

Putting aside the question about the conceptual difference between
incommensurability and indifference, we can ask how it might show
up in behavior. When you make a choice, we take this to “reveal” or
provide evidence of your preferences. For example, suppose a subject
is presented with objects a and b, and they choose a. This is evidence
that they prefer a over b, i.e., a ≻ b. (I’m cheating here by letting a
and b refer to both the objects and the corresponding options, but not
much is to be gained by being pedantic.) Of course mitigating cir-
cumstances might explain why they chose a even though they prefer
b: perhaps a would give them an opportunity to still choose b later
(but not vice versa), or they were threatened (unbeknown to us) or
something else. So it is a tricky business to infer preferences from
choices that people make, but in some idealized circumstances, there
is at least a rough inference we can make that goes from behavior to
preference (more on this when we analyze utilities in more detail).
How could we ever tell the difference, however, between incommen-
surability and indifference? The objection, from this perspective, is
that any behavioral test for incommensurability can also be used for
detecting indifference. We might for example, observe that some-
times a is chosen - in which case we would say that a is at least as
good as b (a ⪰ b) - and other times b is chosen - in which case b is at
least as good as a (b ⪰ a). Since each object is at least as good as the
other, we are invited to infer a ∼ b. It is unclear how to design a be-
havioral test that would detect incommensurability without inviting
the inference to indifference.

Another way to handle the possibility that some objects are in-
commensurable could be to restrict the domain of decision theory.
If some objects are incommensurable, then those aren’t the kinds
of things we can have preferences over, and the theory can’t make
decisions about those things. This response somewhat captures the
difficulty raised by the claim that, e.g., you can’t put a dollar amount
on a human life. One can understand this sentiment as trying to ex-
press that we can’t, or ought not to be engaging in decisions when
these objects are being considered.9 9 But as we suggested above, we may

not like it and may not want to make
it explicit, but we do make implicit
comparisons between money and life.
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The issues we’ve raised about completeness assume that com-
parisons must be done on a single scale. One strategy for handling
these difficulties is to allow for different scales and then find ways of
comparing the scales. This is known as the multi-attribute approach.
However, to understand this approach requires a more sophisticated
understanding of what sorts of things utilities are, and we’ll cover
that in a following chapter.

For now, we’re going to look at other applications of decision mak-
ing when we assume that preferences are transitive and complete.
More specifically, we’ll look at how groups can make decisions given
preferences of individuals.

3.5 Social Choice

3.5.1 Group decisions are not mere sets of individual decisions

Almost all of the examples we have covered have been about indi-
vidual choices. In many cases, however, it is not an individual that
makes a choice, but a group of individuals. This leads to a separate
set of questions about how groups do/should make choices. At the
very least, the way a group makes a choice should in some way re-
flect the preferences of the individuals. It would be extremely odd
if everyone unanimously agreed that the best option for the group
is A, but then some other option is picked “by the group’ ’ that is
unanimously agreed on to be the worst option.

That said, we will see that there are different ways in which we
can be explicit about how a group (a collective of indivbiduals)
should be connected to the preferences of the individuals that make
up the collective. Social choice theory is about how to aggregate pref-
erences of individuals into a single collective preference. It turns out
that there are many ways of doing this aggregation. However, there
can be tensions between the individual level and the collective level,
particularly concerning the notion of rationality.

Here’s a brief illustration of how such a tension could come about.
Suppose that there are three judges, J1, J2, and J3. Each judge is “ra-
tional”, which means at the very least that they subscribe to a rule of
inference philosophers call modus ponens (a latin name for affirming
the antecedent). Modus ponens says that if you believe a conditional
like ‘If A then B’ is true and you also believe that ‘A’ is true, then you
should infer that ‘B’ is true. For example, suppose you know that if
Johnny eats peanuts then he will have an allergic reaction, and you
also know that Johnny is eating peanuts, then you should infer that
Johnny will have an allergic reaction!10 10 Note that the other direction isn’t

valid, i.e., if you know that Johnny
is having an allergic reaction, it’s not
guaranteed that that’s because Johnny
ate peanuts - he might have eaten
something else that he’s allergic to.

Now suppose that each of our judges has been called on to make
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a decision about a case. The case is concerned about a purported
incidence of theft of a water bottle. The judges are asked to assess the
truth of the following three claims:

S1 The defendent stole the water bottle.
S2 If S1, then the defendant should go to jail.
S3 The defendant should go to jail.11 11 Notice that if S1 and S2 are true, by

a matter of logic S3 is forced to be true
too.

Each judge makes their own decision about the case, which are
then collected in the table below.

Judge S1 S2 S3

J1 True False False
J2 False True False
J3 True True True

Notice that each judge meets the rationality constraint of obeying
modus ponens: the only judge that says S3 (the defendant should go
to jail) is the judge that also says S1 and S2 are true. In order to say
that S3 is false, at least one of S1 or S2 would have to be false, and
indeed that is consistent with what Judges J1 and J2 say.

In other words, each judge is individually rational. But what about
the collective? For example, what if we aggregate the judgments of
the judges and use the idea of majority to assign truth or falsity to
the three statements? In other words, we might use majority ruling
to aggregate the decisions into a group decision. If we do that, then
we would have:

Judge S1 S2 S3

J1 True False False
J2 False True False
J3 True True True

Group True True False

Notice that the collective judgment violates modus ponens, that is,
it says that S1 and S2 are true, but S3 is false. Aggregating judgments
by majority voting does not, in other words, preserve rationality from
the individual level to the collective level.

Rationality is not the only thing that we might be concerned about
when we aggregate things from the individual to the collective level.
Not to mention, rationality is somewhat complex even at the individ-
ual level. So let’s turn to something simpler.

What we’ll focus on for the remainder of this chapter is whether
there are ways to aggregate preferences in a consistently accept-
able way. What counts as ‘’acceptable” is something we’ll discuss.



decision theory 43

To start, we’ll look at some examples of how preferences might be
aggregated, keeping track of advantages and disadvantages.

3.5.2 Plurality and Runoffs

One common form of aggregation, especially in elections in the
United States, is plurality voting, also known as ‘first past the post’ or
‘winner takes all’. Let’s look at it in a simple context. Suppose there
are seven people, P1, P2, . . . , P7, that are long time friends and are
deciding on where to go to dinner together. There are four restau-
rants they are considering, R1, R2, R3, and R4. Each person gets one
vote. Suppose the table below summarizes the results of their vote.

P1 P2 P3 P4 P5 P6 P7 Total

R1 Yes Yes Yes 3

R2 Yes Yes 2

R3 Yes 1

R4 Yes 1

By these results, it looks like R1 should be the choice of the group,
because it has the most ‘plurality’ of votes.

Note, however, that while R1 has the most number of votes, it does
not have the majority of votes. Suppose the P4-P7 are all strongly
opposed to going to R1. Then an odd consequence of plurality voting
is that that group goes to a restaurant that the majority of people in
the group oppose.

One way to handle this is to have a ‘runoff’ vote. If no option, such
as an election candidate or restaurant (in our case), is the majority,
then we hold a second vote between the top two vote getters. In our
case that is R1 and R2. Suppose that such a second vote is held and
we get the following results.

P1 P2 P3 P4 P5 P6 P7 Total

R1 Yes Yes Yes 3

R2 Yes Yes Yes Yes 4

In a runoff vote the recommendation we get for the group is to go
to R2.

What plurality and runoff voting have in common is that they are
aggregating people’s first preferences. Little to no weight is given to
people’s second, third, or even last preferences.

This has some advantages. We saw above money pump arguments
for thinking that individual preferences should be transitive and
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complete. One might like this to also be true of group preferences.
So long as we restrict ourselves to the combination of plurality and
runoff voting, the group preference will also be transitive and com-
plete. But the reason for this is because the plurality+runoff system is
ultimately just aggregating preferences for two options. Either there
is an option that gets a majority of first preferences or not. If an op-
tion a gets a majority of first preferences, then a received at least one
more than half the votes. Then for any other candidate x, they can
have at most one less than half the votes. So, a will be preferred to x
and it’s not possible to violate either transitivity or completeness. If
an option a does not get a majority of first preferences, then it might
be possible that a has more votes than another or less. But if a is one
of the two options with the highest votes, then the runoff vote forces
another vote between those to options, say a and b. In this runoff
vote, either a will get more than half, exactly half, or less than half of
all the votes, which correspond respectively to the group preference
being a ≻ b, a ∼ b, or b ≻ a. In each scenario, neither transitivity nor
completeness are violated.

But a system that effectively ignores everything but people’s “first”
preference seems like an impoverished system. The consensus we get
in the plurality+runoff system is forced. To see this, consider another
system that takes into account other preferences besides the first.
This is called the Borda count.

3.5.3 The Borda Count and an Impossible Task

We’ll illustrate the Borda count with our restaurant example. Let’s
suppose that each person ranks the restaurants, so that 4 points goes
to the most preferred restaurant, 3 to the second, 2 to the third, and
1 to the least preferred. If we had five restaurants, we would have
5 points go the first, 4 to the second, etc. In general, if there are n
restaurants, we give n points to the most preferred, n − 1 to the
second, n − 2 to the third, etc. This method of aggregation is used
in some college sports in ranking teams. Notice that it doesn’t just
take into account people’s first preferences, but all preferences. Also
notice that it does not capture how much more you might like one
option over another. Again, all we are doing here is putting the out-
comes in an order using ordinal utilities (an ordering that, at the
individual level, will be transitive and complete).

Suppose we get the following results in our restaurant example.

P1 P2 P3 P4 P5 P6 P7 Total

R1 4 4 4 1 1 1 1 16

R2 1 3 3 4 4 2 2 19
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P1 P2 P3 P4 P5 P6 P7 Total

R3 3 2 2 3 3 4 3 20

R4 2 1 2 2 2 3 4 15

Notice that the first preferences still align with our previous tables
(all the 4’s are in the ‘yes’ positions). Also notice that R1 is still the
least preferred for P4-7, which means we preserve the result we got
from the runoff vote. However, unlike the recommendations of the
plurality vote and the runoff vote, the Borda count recommends that
the group go to restaurant R3.

So the Borda count has a nice feature in that it builds consensus
by considering people’s preferences beyond their first. Even though
the group goes to a restaurant that is almost no one’s first preference
(in our example R3 does happen to be P6’s most preferred), it finds a
restaurant that is broadly acceptable in the group.

So far so good, but we might now ask: is the Borda count a way
of aggregating individual preferences so that, if the individual pref-
erences are transitive and complete, the group preference will be
transitive and complete as well?

Let’s look at the following example. It will help to organize our
table a little differently so that we can tell just by looking what the
vote tallies would be. Rather than put options in the rows, we’ll or-
ganize the rows in terms of people’s most to least preferred options,
going from the top to the bottom. Let’s say we have three people, P1,
P2, and P3, and they are deciding between three books to read to-
gether next month: A, B, or C. The table below summarizes the three
people’s preferences from best (1st) to worst (3rd).

Preference P1 P2 P3

1st A B C
2nd B C A
3rd C A B

If we just compare the preferences between books A and B, then
A would get 2 out of the 3 votes (whatever those points would be).
If we just compare B and C, then B gets 2 out of 3 votes (2/3). So
this might suggest that, in terms of the group preference, A is pre-
ferred to B and B is preferred to C. But when we inspect further and
compare A and C, we’ll see that C gets 2/3 votes. Our pairwise com-
parison produces a cyclical group preference: A ≻ B, B ≻ C, and
C ≻ A. This is in violation of the constraints that group preferences
should be transitive, i.e., if A ≻ B and B ≻ C, then A ≻ C, not C ≻ A!
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One potential response to this cyclical situation is to say that the
group should be indifferent to A, B, and C, i.e., A ∼ B ∼ C. The
problem with this suggestion is that we can’t both accept it and the
condition called the independence of irrelevant alternatives (or IIA).
Suppose, for example, that book C is on back order and will not be
delivered in time for the group to read next month. Book C is now an
“irrelevant alternative” and we should drop it. But here is the prob-
lem. If we agreed that the group should be indifferent between the
three groups, A ∼ B ∼ C, then dropping C, the irrelevant alternative,
should not affect whatever preference holds between A and B. That
is, after dropping C, the group should still be indifferent between
A and B, i.e. A ∼ B. The preference between A and B is said to be
independent of the irrelevant alternative. But let’s look at the table again
if we drop C there:

Preference P1 P2 P3

1st A B A
2nd B A B

The table makes it pretty clear that the group should prefer A to
B. But maybe the group decides to hold themselves to their origi-
nal agreement and uphold IIA. That is, since they had agreed that
A ∼ B ∼ C before they knew that C was on back order, the group
preference should still be A ∼ B - despite what the new table says.
The problem with this proposal is that it does not maintain the im-
plicit fairness that each person’s preferences gets equal weight in the
group. To be indifferent between A and B, the new table would have
to assume that P2’s preference for B is worth twice as much as P1’s
preference for A (and likewise P3’s). That goes against the very point
of aggregating their preferences through something like the Borda
count. P2 would be something like a ‘’dictator” in shaping the group
preference.

Maybe another strategy is to leave behind the Borda count method
entirely and instead require a consensus - a unanimous vote - in
order for the group to prefer one option to another. If there is no con-
sensus among the voters between two options, then the group shall
be indifferent between those options. Looking at our tables, it is clear
that there is no consensus that A is preferred to B, since P2 prefers B
to A. This ‘method of consensus’ is nice in that it satisfies IIA (inde-
pendence of irrelevant alternatives) and does not give more weight
to one person’s vote over others. In fact, this ‘method of consensus’
seems like the only possible solution to the ‘cyclical preferences’ is-
sue.
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The problem with the consensus method suggestion, however, is
that it violates transitivity. Suppose instead of the summary tables
above, we had these results instead.

Preference P1 P2 P3

1st A B C
2nd B C A
3rd C A B

The group unanimously votes that A is preferred to C, and so by
consensus we get A ≻ C. If we compare A and B, we notice that
there is no consensus, and so by this method the group should be
indifferent, i.e., A ∼ B. Similar inspection of the table means B ∼ C.
Since we have A ∼ B and B ∼ C, then by the transitivity constraint
we should have A ∼ C, but our consensus method told us A ≻ C!

The tension we are feeling is actually a very deep problem. It can
be laid out explicitly in a formal argument and is known as Arrow’s
Impossibility Theorem. What it says, put intuitively, is that for any
voting system that allows for three or more options, at least one of
these three things will not hold:

1. Unanimity: If everyone prefers A to B, then the group prefers A to
B.

2. Independence of Irrelevant Alternatives: If nobody changes their
mind about the relative ordering of A and B, then the group can’t
change its mind about the relative ordering of A and B.

3. No Dictators: For each voter, it is possible that the group’s ranking
will be different to their ranking.

To be clear, we are not saying that all voting systems are bad:
some are worse than others. Presumably a voting system that sat-
isfied none of these conditions is pretty unacceptable, especially in
comparison to a voting system that at least satisfies No Dictators
and Unanimity. What Arrow’s Impossibility Theorem tells us is that
it’s impossible to have it all, i.e. a voting system that obeys all three
features.

3.6 Limitations and Key Take Aways

All that said, we have narrowed in on a result about group pref-
erences that is deep, but not without a fair number of substantial
background assumptions (some of which we have left implicit). For
many group decisions, like friends choosing what restaurant to go
to, some of the assumptions either might not hold, or the conditions
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don’t impose a level of unfairness that we care too much about. For
example, while we might have to allow one friend to dictate what
restaurant to go to this Friday night, we might allow another friend
to dictate where to go the following week. Or we might allow the
group to split and go to do different restaurants (whereas in elections
it is not typically possible to elect two presidents simultaneously). In
any case, the range of Arrow’s Impossibility Theorem is limited to
several background assumptions, and while many political elections
meet those assumptions and thereby face certain impossibilities, lots
of group decisions don’t meet those same background assumptions.

So we have seen the kinds of uses that ordinal utilities provide us
with, particularly as a tool for ranking things, both on the individual
and group level. They have also helped us introduce important con-
cepts like transitivity and completeness, which we will make further
use of in later chapters. But they have important limitations. Two are
particularly relevant.

First, while ordinal utilities allow us to order outcomes from best
to worst, they don’t provide us with a way to say how much more we
might like one outcome over another. In our restaurant example,
each person ordered or ranked their restaurants from most preferred
to least preferred. But it possible that the difference between one
person’s first and second choice is very small, while for another
person it is very large.

Second, ordinal utilities don’t give us a way to compare how much
one person’s first choice is liked in comparison to another’s: one
person might absolutely love their first choice, while another person
sees their first choice as bad, but the least bad among all the options.
We’ll see whether a different kind of numbering system that uses
cardinal utilities will help us with these two limitations. (Spoiler: they
help for one, but not the other.)

Exercises

1. Transitivity is a kind of pattern that some relations have. Intu-
itively, a relation can be anything that involves two objects. Exam-
ples include “John is left of Sally”, “this stone is heavier than this
chair”, and “Oliver is funnier than Connan”. It’s helpful to think
of transitivity in terms of a pattern that a relation R might have:
if xRy and yRz, then xRz. Think of different kinds of relations
you could plug into R and the kinds of objects that x, y, and z are
related by R.

• What are examples of relations that are transitive?
• What are examples of relations that are not transitive?
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2. Similarly to above, completeness is a kind of pattern that some
relations have: either xRy or yRx.

• What are examples of relations that are complete?
• What are examples of relations that are not complete?

Money Pump Arguments. Suppose you have two roommates
named Peter and Sally. The three of you watch an episode from
a series together every night of the week except Sundays. There
are three different series that the three of you have been following
together: Show A, Show B, and Show C. Because you own the de-
vice and pay for the streaming subscription, you get to pick which
show to watch on any given night. Peter claims that he always
prefers Show A over Show B, that he always prefers Show C over
Show A, and that he always prefers Show B over Show C. Sally, on
the other hand, is always indifferent between Show B and Show
C, but she prefers Show A over either those two. Your preferences,
however, change on a day to day basis, but you prefer not to watch
the same show two days in a row and you want to see at least one
episode from each show in any given week. That said, let’s sup-
pose that you’d be willing to let one of your roommates pick the
show in exchange for one dollar. Explain how you could “money
pump” one of these roommates but not the other. In your explana-
tion, feel free to imagine that you’ll make offers to Peter on every
day for one week, and then to Sally on every day another week.
What sequence of selections in a week would guarantee that you’ll
get $6 from exactly one of those roommates?

3.4. Make a table like the Borda count restaurant example, but so that
the group choice is not anyone’s most preferred choice.

5. Make a table like the Borda count restaurant example, but so that
the group choice is at least one person’s least preferred choice.





4
Utilities

There are three broad questions we would like to answer in this
chapter.

1. Is there a way for a person to represent how much more one option
is preferred to another?

2. Is there a way to compare one person’s preferences to another
that isn’t just the ordering of the options? That is, can we say
something more substantial about two people’s first choice, like
that one person likes it the most but another dislikes it the least?

3. How do we interpret what the numbers mean? What are the num-
bers referring to in the real world? That is, what is their content?

These questions are not just philosophical. There are impor-
tant practical considerations at stake. For example, the World Health
Organization (WHO) has to somehow measure the value of medical
interventions. The unit they use in their assessments is called a QALY
- quality-adjusted life-year. A QALY incorporates both the quality
and quantity of life lived. One QALY amounts to living one year in
perfect health, while zero QALY amounts to death. The QALY is not
without controversy and the debate ranges from purely philosophical
considerations to the deeply pragmatic constraints that policy-makers
face.1 1 Another example that we will look at

below is how the concept of utility can
motivate arguments concerning social
welfare and taxation.

We will introduce the idea of a cardinal utility.2 The basic idea

2 Supposedly the first use of “cardinal
utility” was in 1934 by John Hicks and
Roy Allen.

is to use what’s called an interval scale. In addition to being able to
order things using numbers, the numbers are also meant to represent
magnitudes. Money is an example of an interval scale, to some ap-
proximation. We can use money not only to order things from most
expensive to least expensive, but we can also say how much more
expensive one thing is to another. One might think, however, that
money is ultimately limited in how fine-grained it can be - perhaps
it doesn’t make much sense to speak of quantities that are smaller
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than a cent. Whether or not that’s the case, cardinal utilities can be
arbitrarily precise and are typically represented using real numbers
(as opposed to whole numbers).3 3 The “real” in “real numbers” doesn’t

mean something like “actual num-
bers.” The history of numbers and
number systems is fascinating (see the
Wikipedia entry for “number”). The
main thing for our purposes is just to
know the difference between integer
numbers and real numbers.

If we could build an interval scale for preferences, we
might be able to solve some of the limitations of ordinal utilities. For
example, suppose there are four books, A, B, C, and D that both Alice
and Bob are considering to read together next month. Using just or-
dinal utilities, it is easy enough for Alice and Bob to order the books
with respect to their preferences: each will use 4 to represent their
most preferred book, 3 the next preferred, and so on. But remember
that we allow for ties, say between B and C. That is, it could be the
case that both Alice and Bob agree in their preference orderings, so
that A ≻ B ∼ C ≻ D. But what should we make of the situation
where Alice assigns 4,3,3,1 for books A, B, C, D, respectively, while
Bob on the other hand assigns 4,2,2,1 to them? These numbers pre-
serve the same ordering, and so from an ordinal utility perspective
they are the same, but Alice and Bob seem to want to say something
different about how B and C compare to the extreme ends of their
best and worst options. How do we even go about this?

4.1 Creating an Interval Scale

The Lottery Option Procedure is one way to capture infor-
mation about how much one option might be preferred to another.
Suppose we have just three options and Alice orders them like this:
A ≻ B ≻ C. We want to find how much more Alice prefers B to
C, and how much less she prefers B to A. To do so, we create a new
option, L. We can think of option L like a lottery that will have A and
C as “prizes”. But what should the odds be of winning C in lottery
L compared to the odds of winning A? Suppose lottery L has 100

tickets. Given that Alice prefers A over C, it seems that A should be
on all of the tickets. But what we want to find out is how B compares
to A and C. So what we do is figure out at what point Alice would
be indifferent between B and L, where L specifies the fraction of all
tickets where A wins and the fraction where C wins. Let’s see some
examples to illustrate.

Let’s say lottery L has 50% tickets with A and 50% tickets with C.
We ask Alice which of the preferences she has: B ≻ L, L ≻ B, or
B ∼ L?

• If Alice says B ≻ L, then this means that she prefers getting B to
a 50% chance of getting A. That is, she prefers B more than “half
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as much” as A. But that still doesn’t tell us how much more than
“half as much” as A. So, in this case we would change the lottery
L to a new lottery L’ by increasing the fraction of tickets that would
go to A and then ask for her preference again, comparing B to L’.

• If instead Alice had said L ≻ B, then that means that she prefers a
50% chance of getting A than getting B. Here we would change the
lottery L to a new lottery L’ by decreasing the fraction of tickets for
A.

• (Indifference) Finally, if instead Alice had said B ∼ L, then that
means she is indifferent between getting B and a 50% of getting A.
Here we wouldn’t have to change anything about the lottery.

Suppose we have gone through this process and we find the
lottery where Alice’s preference between B and L is indifferent,
i.e. B ∼ L. And let’s suppose that L has 75% of the tickets go to A
and 25% to C. The idea behind creating an interval scale from this in-
formation is to think that Alice’s desirability of B is 75% of whatever
her desirability of A is. For example, let’s suppose that Alice’s utility
of A is 1 and her utility of C is 0. Then her utility of B would be 0.75.
If instead Alice’s utility scale were 0 to 8, with C at 0 and A at 8, then
her utility of B would be 6.4 4 Exercise: draw this as a diagram.

So the introduction of a lottery option helps us make important
progress on determining the magnitudes of utilities, but only relative
to the utilities of other options. That is, the lottery option procedure
doesn’t help us decide what the scale itself should be. It just helps us
assign utilities given that we have some scale. To some extent this is
a nice feature. Notice that, no matter what scale you pick, the lottery
option procedure will always preserve the ordering given by the
ordinal utilities, and moreover the resulting cardinal utilities will also
preserve transitivity and completeness. We thus have an answer to
our first question for how to represent the magnitude that one option
is preferred to another.

There are, however, at least two limitations.

First, because the lottery option procedure starts with ordinal util-
ities, which can only order options relative to one another, it cannot
determine an absolute scale, only a relative one. In order to get an ab-
solute scale, we would have to make additional assumptions, like that
utilities start at 0 and are maximally 100. But without such additional
assumptions, cardinal utilities on the interval scale will be relative to
each other.

The second drawback is that it is not possible to do interpersonal
comparisons with either ordinal or cardinal utilities, without the aid
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of additional assumptions. To see this, note the example we had
above, where Alice assigns 4,3,3,1 for books A, B, C, D, respectively,
while Bob assigns 4,2,2,1 to them. Suppose we do the lottery option
procedure on Alice and she is indifferent between B and L, where L
has 75% of tickets go to A and 25% of tickets go to D. (Notice since
Alice is indifferent between B and C, we could also have used C
instead.) Then if Alice’s utilities were cardinal utilities instead of
just ordinal utilities, and her scale went from 0 to 4, her preference
of B would be 75% of A. Since A has utility 4, then B has utiliy 3.
Now suppose we do the same for Bob, and he too accepts the same
lottery. Then even though he had assigned 2 to B in his ordering, we
know that he prefers B the same as 75% of A. Since A had 4, then as
a cardinal utility Bob would give B a 3. However, nothing about this
reasoning tells us anything about what the number 4 corresponds to
in Alice and Bob. As we had said before regarding ordinal utilities,
Alice’s most preferred option might correspond to a great deal of
well-being and satisfaction, but that same option might be utterly
miserable for Bob, it’s just that the alternatives are even worse. For all
we know, Bob’s assignment of 4 is Alice’s assignment of 0. Nothing
about the lottery option procedure allows for a comparison between
one person’s scale and another’s.

So unfortunately, as far as we have come to this point, the answer
to our second question is negative: neither ordinal utilities nor cardi-
nal utilities allow us to make comparisons between people’s prefer-
ences beyond their relative orderings. But maybe there are principled
ways of making extra assumptions that would help us justify one
scale over others, and then combine it with the lottery option pro-
cedure so that we can do interpersonal comparisons. In the sections
below we will look at some candidate views, which are typically con-
nected to views about well-being or welfare. To spoil things, none of
the views except for what is known as the preference-based theory
tends to be widely accepted, and even it has limitations.5 5 There is still a lingering issue that

we have not made explicit. Notice
that in the lottery option procedure
we ask people to have a preference
over an expectation. A lottery L is
quite a different sort of thing than the
options themselves. It asks us to have
a preference about a probability that
we get an option. This is an important
complication we have introduced, and
we take it up in the next chapter.

4.2 What do the numbers mean?

4.2.1 Material and money

A naive account of well-being or value might start with ma-
terial goods. Of course we all need shelter, food, water, and basic
commodities to live. But it is widely accepted that material by itself
cannot be a good measure of value, let alone utilities. For one, there
is far too much diversity between which goods some people find
valuable compared to others. I might collect whisky, while someone
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else collects dolls. If we are going to try to build some interpersonal
scale, material goods will be of little help.

Money, on the other hand, can be a very useful guide in approx-
imating the utility of an outcome. It is generally something that we
all want, and something we are all willing to give in exchange for
the material goods we prefer. Moreover, money also has the feature
of putting things in an ordering. If A has more utility than B, then
under some circumstances I’d be willing to pay more for A than I
would for B. That said, there is a massive difference between the
idea that money can roughly track utilities and the idea that money
and utilities are one and the same. Anyone that thinks money and
utilities are identical immediately faces several puzzles.

Here’s one: the more money you have, the less ‘valuable’ an extra
$1000 will be to you. Someone that earns $20K a year will find $1K
more useful than someone earning $1M a year. Same amount of
money ($1K), but different amount of utility.

This is a nice illustration of a more general point about the nature
of money. The utility value of $2x is not twice the amount of $x.
When you get the first $x, the second $x will be less valuable than the
first. Economists call this feature of money declining marginal utility.

Here’s a fictional but illustrative example. Let’s suppose that the
increase you get in utility for every extra dollar can be represented
by: Utilities = Money1/2. If we plot this function, we get the graph
below. Notice that the first few dollars have a sharp rise in utility,
but then as we continue to increase the dollar amounts the curve
becomes less steep. In other words, the more money you get, the
slower the amount of utility grows. The marginal utility is the utility
that you get for an extra unit of good (money in this case), and it’s
declining because the size of the increase in utility is going down (the
precise amount is the slope of the curve at any point, which is the
derivative of our function, which is 1

2money ).
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Figure 4.1: Notice that the first 200

dollars get a rise in utilities that’s about
140, but the next 200 dollars (from
200 to 400) only get a rise of about 60

utilities.

The fact that marginal utilities decline means that money
and utilities don’t have a one-to-one relationship.6 And because

6 If it were a one-to-one relationship, we
would have a straight diagonal line in
our plot instead of a curved one.

money and utilities don’t even have a one-to-one relationship, they
can’t be identified as the same thing, even if there seems to be some
kind of indirect relationship between them.

This indirect relationship between money and utilities

can be used to justify certain taxation policies.7 Taxation is a way to 7 The history of taxation is a compli-
cated one and the point to be made
here is meant to be only illustrative, so
we’ll ignore numerous complications.

help support society at large by funding projects that are beneficial
to its members on aggregate (think roads, sewage, public spaces,
etc). Except in very special circumstances, here’s a bad way to fund
projects: have a flat fee that each person pays each year, regardless
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of their income. Suppose the flat fee is $1K per year. Superficially,
it seems that this is fair, since both the person earning $10,000 (call
him Tim) and the person earning $1,000,000 (call her Molly) are con-
tributing the same dollar amounts through taxation. But a utility
perspective shows that such taxation is not fair at all. The $1K com-
ing from Tim means he has $9,000 left after taxes, while Molly has
$999,000. If we look at their respective loss of utilities from the de-
creases in their spendable income, Tim is giving up more than Molly.
To see this really clearly, imagine someone who only makes $1,000 (or
no money at all) - they would have nothing after the flat tax fee (or
even be in debt because of it!). Given these kinds of considerations,
we can see why there are plausible reasons for taxing the rich “more”
than the poor.8 8 We put ‘more’ in scare quotes because,

while it is more from a monetary
perspective, that may not hold from a
utility perspective.The relationship between money and utilities is actually far

more curious than what declining marginal utilities suggest. We just
saw how getting more money doesn’t lead to an equivalent amount
of utility. There are also examples where utility seems to be under-
mined by the mere introduction of the possibility of representing
utilities with money.

For example, suppose a friend asks you for help to move apart-
ments. You consider this to be a favour, one that you expect your
friend to return when you move. We can see this as a kind of ‘tit-for-
tat’ exchange of utilities: the payoff you get for helping is the promise
of getting help in the future (not to mention all the warm fuzzy feel-
ings that come with helping another person generally, let alone just
common decency).

But now suppose that your friend offers you one dollar for every
hour that you help. From one perspective, that should sound like a
great deal: you get all the benefits we just mentioned above, plus an
extra two dollars for every hour of your time!

Most people, however, do not see it this way. Once your friend
offers you the $2/hr rate, you’re likely to start thinking about what
your time is worth in monetary terms, and your friend’s offer is
likely to be insulting to you. So, where from a naive perspective
we might expect that the offer of money increases your preferences
for the outcomes related to helping, it can actually have exactly the
opposite effect. Somehow, for whatever reason, the introduction of
money, even just the suggestion of it, can be parasitic on utilities
related to social norms.

Here’s an interesting twist. Imagine instead of money, your
friend offered you beer instead (or whatever your beverage of choice
may be). As long as your friend doesn’t mention that the monetary
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value of the beer is equal to the $2/hr rate, it’s likely that you view
the offer as more than fair. But if the beer is playing the role of mon-
etary exchange, then you’d probably ask for more if you think your
hourly rate is more than $2.

If your intuitions about this example are in line with this narrative,
then it’s consistent with empirical findings concerning favours, gift
giving and monetary exchange. (CITE ARIELY) As long as money
is not mentioned, social norms dictate some roughly fair exchange
of social utilities: I help you knowing that in the future there’s a
good chance I can count on you to reciprocate. But once money gets
introduced, we tend to switch over to a very different way of thinking
about the exchange.

These examples are not meant to suggest that there is no relation-
ship between money and utilities. The point is that, at the very least,
there is no straightforward way to substitute between money and
utilities. So with that in mind, we turn now to consider what utilities
might be.

4.2.2 Hedonism and Experience-based Theories

What makes something good? Or what makes it bad? Jeremy
Bentham identified the good with pleasure and the bad with pain.
On this view, we tend to avoid painful experiences because pain is
identical to badness, and we tend towards good experiences because
the good and pleasure are one in the same. This view gives us a neat
little picture: someone’s welfare is high if they have lots of good
experiences and few bad ones, and welfare decreases as the num-
ber of good/pleasurable experiences go down while the number of
bad/painful experiences go up.

It doesn’t take long to realize that this picture gets complicated
quite quickly. That is, we can find ways in which changes in pleasur-
able or painful experiences don’t neatly track changes in welfare. For
example, earning money can be a painful experience, quite literally
if your job involves hard manual labour. And yet at the same time,
that person might say that their welfare is going up. They may even
say that their welfare is going up because they have to endure some
painful experiences.

We might say that’s not quite right. After all, it’s not difficult to
imagine that someone might be able to increase their welfare even
further if their job were less painful. Then again, if the job were less
painful, the pay may go down accordingly. At the very least, what we
can say thus far is that there is not some simple relationship between
pleasurable/painful experiences and welfare - we can imagine wel-
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fare go up even with the introduction of some painful experiences.
There is an argument that, even if we introduce a host of com-

plications, there simply is no account to be given that definitively
connects welfare to the level of pain or pleasure of our experiences.
The argument comes from a thought experiment from Robert Nozick
called the experience machine. Here’s a version of this argument.9 We 9 Nozick’s thought experiment was

written in 1974, before the movie
The Matrix came out in 1999. But
if you’ve seen the movie you can
easily imagine the sort of scenario that
Cypher discusses.

are asked to imagine a matrix-like situation in which a machine pro-
vides our brain with all the experiences of a good life - whatever that
might mean to you. Like in the matrix, these experiences are not just
sensations. The experiences are just like the ones we would have in
real life, including the relationships we have with friends and family.
The only difference is that the interactions weren’t with real people.
But we don’t know that while in the experience machine. To the best
of our knowledge, we can’t tell the difference whether our friends
and family actually died and they’re just being simulated perfectly, or
whether our interactions are with real individuals.

Nozick argues that a person that’s lived a life in the experience
machine has lead a bad life. Why? Because their entire world has
been based on an illusion. While it is true that the person in the
experience machine doesn’t know the difference, if we were to take
them out of it, it is likely that they would agree with us that the
illusory nature of the experiences they had undermines the level of
welfare they would assign to those experiences. If you think that
welfare and good experiences track each other perfectly, then you
would have to maintain the position that the person living in an
experience machine lead a good life.

Notice that the argument isn’t saying that experiences don’t matter
to welfare or the good life. Rather, the argument is saying that the
character of our experiences is not all there is to a good life. That
is, good experiences might be necessary to a good life, but they are
not sufficient. What the experience machine argument is supposed
to show is that one of the elements that’s missing in an experience-
based approach to welfare is the notion of experiences being real.

Even if you don’t find the experience machine argument com-
pelling, there are other issues that remain. My experience of listening
to heavy metal may produce pleasure, while it may produce pain in
you. The fact that it feels good to me but bad to you suggests that we
can’t be having the same experience. If that’s right, then we have to
say that there are two different types of experiences being had while
you and I listen to the same heavy metal track.

If that’s not right, that is, if there is only one type of experience
being had, is there anything that can be said to explain the difference
in how you and I perceive the goodness and badness? One attempt
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might be to distinguish between lower and higher order experiences.
That is, we might be having the same lower order experience of the
music (this might be something like the ‘raw’ perception of the mu-
sic) but we could be having different higher order experiences. I
might have a higher order experience of the lower order experience
of violent drumming as an expression of existential angst, which feels
good to release, while your higher order experience of the drumming
might remind you of the frustrations of learning to ride a bike.

There are some good reasons for thinking that our experiences
have these multiple levels happening in parallel. The smoker might
know very well that they are engaging in risky behaviour, but at
the same time that risky behaviour could be providing them with
a higher order thrill. That might also be what’s going on for some
people when they watch horror movies.

But not all experiences seem to have such multiple levels. When
I taste a scotch whisky from Islay (Scotland), I think the the salty,
smoky, burnt rubber flavours are good, while many people think
those exact same flavours are bad. And this difference doesn’t seem
to be one characterized by differences in higher order experiences.
That is, our differences in tastes of scotch seem to be just at the lower
order. If it’s right, then the challenge for the experienced based view
is to resolve the contradiction that the experience is good for one
person but bad for another (given that the bad and the good are
identified with experiences).

There are additional concerns with the experience-based view con-
cerning the nature of time. A good experience today seems better
than the same good experience 10 years in the future. This is not un-
like the case of how money works, but it is more general and called
discounting the future.

Suffice it to say here that a purely experience-based view doesn’t
distinguish between the goodness or badness of an experience rela-
tive to your current point in time, and yet we do seem to behave in
such a way that the present and near future are somehow different
than the distant past or future.

4.2.3 Objective List Theories

Objective list theories start with the recognition that welfare may not
be an aggregation of something simple, like a collection of pleasur-
able experiences. Rather, objective list theories recognize that welfare
is a heterogeneous collection of things. We might have something like
the following list:

• Good health
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• Shelter
• Being in loving relationships with family and friends
• Experiencing beauty
• Engaging in virtuous behavior
• Being rational
• Acquiring knowledge
• Doing things that make a life good, including things on this list

The approach to welfare as a multi-faceted concept is supposedly
a strength of objective list theories, but it can also be seen as its pri-
mary weakness. There are a few ways to making the objection.

In order for any of the decision making rules to work, they need to
assign a number to an outcome. So somehow, the information that’s
on a list has to be converted into a single unit of measurement - a
utile. A list by itself doesn’t tell us how to aggregate that informa-
tion. So in order for an objective list theory to work for the decision
making rules we’ve considered, it has to also provide such a proce-
dure.

There are reasons for thinking that there is no plausible pro-
cedure for converting lists into utilities. For one, the very items on
a list don’t seem to be fixed. Different people might have different
items on the list (perhaps we should then call it subjective list theory).
Or, even if the items on the list are the same, different people might
weight the items differently. An academic and an athlete are likely to
give different weights to acquiring knowledge and good health. So a
procedure for converting lists has to deal with the fact that lists might
differ in both the items that are on them and the weights to assign to
items.

In order for any procedure to have the capacities just stated, there
has to be a way for items on the list to be compared. The main thrust
of the objection capitalizes on this requirement and it can be repre-
sented in the form of a dilemma.

On the first horn, there is no way of making comparisons be-
tween the items such that they can be aggregated into a single num-
ber. On this horn objective list theories concede that they can’t pro-
vide an account of utilities for the purposes of decision making.

On the second horn, there is a way of making a comparison be-
tween the items. Comparisons are only possible if the items have
something in common, some way of relating them to one another.
But if they have something in common, then why not use whatever
that is as a basis for utilities? For example, if the thing in common
between experiencing beauty and being in a loving relationship is
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that they produce pleasurable experiences, then why not just use
the experienced-based approach in the first place? On this horn of
the dilemma, objective list theories give up the very idea that mo-
tivated them in the first place: that welfare is heterogeneous and
multi-faceted.

In brief: if welfare is so heterogeneous that the items on the list
cannot be compared, then the first horn is faced, but if items can be
compared, then the second horn is faced. On either horn, objective
list theories aren’t the right account to provide a measure of utility.

4.2.4 Preference-based Theories

One objection common to both objective list theories and experience-
based theories is that different people can have different views on
what is good for them. That is, what counts as good for me can differ
from what counts as good for you. One way to think of this is to say
that welfare is something that is subjective, not objective.

Preference-based theories take this kind of objection seriously.
On these accounts, what counts as good is that a preference is satis-
fied. A is better than B for an agent if and only if A is preferred to
B by that agent. If we are talking about some other agent where B is
preferred to A, then for that agent B is better than A.

Before we consider some complications of this approach, it’s worth
noting several advantages. As we already noted, a preference-based
theory can handle the issues we raised earlier: that what increases
welfare for one person (like our athlete) may not be what increases
welfare for another (like our acaedmic).

But another substantial advantage is that preferences can be both
nuanced on the one hand, and provide a unifying measure that we
can use for utilities. For example, it has no problem handling dif-
ferences in how people weight different items, or the times at which
they would like for the items to be instantiated. For example, one
person may prefer a steady stream of somewhat pleasurable experi-
ences, while another enjoys a roller coaster of ups and downs in life.
Preference-based theories are sufficiently general to account for such
differences.

One serious complication of this view, however, comes from the
idea that people could be wrong about what’s good for them. On a
purely subjectivist view, whatever a person desires is what’s good
for them, and vice versa. It seems perfectly reasonable, however,
to say that sometimes people don’t know what’s good for them.
Sometimes we think we know what’s good for us, but we’re actually
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wrong about that. Sometimes our preferences are challenged by other
people. Anyone that has had the thoughts, “I wish I didn’t drink so
much” or “I wish I didn’t smoke” are good examples of this.

So the trouble is, we want to be able to say both how welfare can
be differential across individuals, but at the same time we want to
be able to account for the fact that individuals could be wrong about
what’s good for them. Surely the right answer is somewhere in be-
tween. We don’t expect utilities to be entirely subjective, nor entirely
objective. Call this the subjective-objective tension (as opposed to
dilemma, which would suggest we have to pick one or the other).

One of the advantages of the preference-based approach is that
it needn’t be purely subjectivist. In fact, one of its chief advantages
is that we needn’t wait for a resolution in the debate about how to
balance the two sides of the subjective-objective tension. All that a
preference-based approach demands is that some minimal criteria be
met about what preferences are for an individual. Decision theory, as
we’re considering it, is about how an individual should decide given
their preferences (recall our discussion of instrumental rationality). It
thereby sidesteps some of the issues regarding interpersonal compar-
isons. In the previous chapter we looked at two minimal criteria for
preferences (transitivity and completeness) and arguments for them
(money pumps).

4.3 Applications and Challenges

Whatever view you might be attracted to about cardinal utilities,
let’s have look at an application of them that is not available if we
just used ordinal utilities. This is called the minimax regret rule. After
examining that rule, we consider some challenges of trying to distill
down utilities into a single number.

4.3.1 Minimize Regret

A simple thing we can do with cardinal utilities is give a rough mea-
sure of regret. Let’s consider an example. Suppose your options are
to party, study, or call your family. Suppose further that tomorrow’s
exam will be either very difficult, medium difficult, or easy. Let’s say
that you assign the following utilities to the nine possible outcomes.

Very Difficult Medium Easy Exam

Party! 1 5 20

Study! 15 10 3
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Very Difficult Medium Easy Exam

Call Family 7 8 9

There are different ways of thinking about regret. Here’s one plau-
sible way. Given a particular state, the amount of regret of an option
is the difference between the highest outcome among all the options
(under the given state) and the option under consideration. For ex-
ample, under the state Easy Exam, the option to party has the highest
outcome. So, the option to party has a regret of 0, the option to study
has a regret of 17, and the option to call family has a regret of 11.
Using the same strategy, we can calculate the amount of regret for
the options under each of the other states. We then get the following
table of regrets:

Very Difficult Medium Easy Exam

Party! 14 5 0

Study! 0 0 17

Call Family 8 2 11

Using this regret table, the minimax regret rule says to minimize
the maximum possible regret. The strategy proceeds in two steps:
first, find the maximum regret for each option (for Party! it’s 14, for
Study it’s 17, and for Call Family it’s 11), then second, pick the option
with the lowest regret (in our example it’s Call Family).

The minimax regret rule seems intuitive enough. Given the prefer-
ence assignment, we really prefer to party if the exam is easy, and we
really prefer to study if the exam turns out to be very difficult. The
option to call family lies somewhere in the middle: no matter how
hard the exam turns out, it feels pretty good to get encouragement
from talking with family. But we are uncertain about how difficult
the exam will be. Because we’re uncertain, and under the assump-
tion that we would rather not regret our choice, our best bet is to call
family.

Independence of Irrelevant Alternatives
There is a principle called independence of irrelevant alternatives, or

IIA. The basic idea is that if you choose a specific option, like Call
Family above, then removing one of the other options shouldn’t
change the recommendation. More formally, if option x is recom-
mended among a set of options T, then if S is a subset of options
from T and x is a member of S, then x should still be the recom-
mended option.

It turns out that the minimax regret rule does not obey IIA. If it
did, then that means the option to call family would still be recom-
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mended even if we ignored the option to go to the party (maybe it
was canceled last minute). But we can show that minimax regret
actually changes its recommendation.

To show this, we first take a subset of our previous options and
make sure that Call Family is still a member of that subset. We can
do this by deleting the option to party from the table above. That gets
us this next table.

Very Difficult Medium Easy Exam

Study! 15 10 3

Call Family 7 8 9

Next we create our new regret table. Notice that this time we’ll get
different numbers under the Easy Exam column. This is because the
highest outcome is no longer the one where we party and the exam is
easy (20) - we’ve removed the party option altogether and thereby the
corresponding outcomes. So now the highest outcome under Easy
Exam is 9. In the other two columns, the highest outcomes are still
the same (they are the study row). When we create the regret table,
we then get the following.

Very Difficult Medium Easy Exam

Study! 0 0 6

Call Family 8 2 0

Following the minimax regret rule, we see that Study has a max-
imum regret of 6 while calling family has a maximum regret of 8.
Picking the minimum of these leads to the recommendation of study-
ing, the opposite of the recommendation it gave when we considered
that the party was still on.

If we think that the Independence of Irrelevant Alternatives prin-
ciple is correct, then that speaks unfavourably to the minimax regret
rule. It is not obvious, however, that we should accept IIA. Here are
two arguments why we might not accept IIA.

The first argument against IIA comes from empirical consid-
erations. People seem to systematically behave at odds with IIA. A
famous example is known as the decoy effect.10 Suppose you are de- 10 CITE Kahnemann, CITE Ariely

ciding between two sandwiches, a small one (say a 6 inch loaf) vs
a large (say 12 inch). The small is $6 and the large is $10. Between
these two options, let’s suppose that your preference is for the small
sandwich - it’s enough to fill you up and costs less than the large
sandwich. Now imagine that the store announces a limited time



decision theory 65

medium sandwich, coming in at 9 inches and $9. A lot of empiri-
cal work suggests that your disposition towards the large sandwich
changes with the introduction of the medium sandwich, even if you
don’t actually have a preference for the medium sandwich. That
is, in many cases people will opt for the large sandwich when the
medium sandwich is present, but they prefer the small sandwich
when it is not, even though the medium sandwich is not preferred.
The medium sandwich is called the decoy.

Once you see it, you’ll start noticing the decoy effect in a lot of
places, especially in advertising. The effect is not restricted to mar-
keting, however. Its applications are broad, even in dating. Suppose
you see Jordan and Taylor at a party and you have a romantic interest
in each of them. You find both equally attractive. You know Jordan
is a great piano player while Taylor is a great guitar player. You have
a bit of a soft spot for piano players, so you’re inclined to strike up
a conversation with Jordan (i.e., you have slight preference for Jor-
dan over Taylor). But just as you head in Jordan’s direction, you hear
Taylor strumming along to a tune with one of their guitar playing
friends, Kennedy. It’s clear that Taylor is a more talented player than
Kennedy. Research suggests that because you can compare Taylor to
Kennedy - Kennedy is the decoy in this case - your preference can
switch from your interest in Jordan to Taylor. Kennedy is irrelevant -
you have no romantic interest in Kennedy - but their mere presence
can affect your preferences. Of course, you hope that you’re not the
decoy for the friend who invited you to the party.11 11 CITE Dan Ariely

Just because the decoy effect is widespread, however, does not
make it a definitive point against IIA. It is possible to say, in IIA’s
defense, that people are systematically failing to be rational. How
much one takes seriously the empirical data in informing theoretical
choices will depend in part on how descriptive and normative as-
pects of decision theory interact. As a descriptive theory, IIA fails to
hold, but as a normative theory we may endorse IIA and point to the
decoy effect as a systematic failure on our part to be ideal decision
makers (just like some of us systematically fail at parallel parking).

The second argument against IIA, however, comes from theo-
retical considerations. The thought is that even as part of a normative
theory, IIA is too strict of a requirement for rationality. One might
think, for example, that when we are considering our options, we
should do so holistically. That is, we should not just be comparing
options pairwise or side by side until we have a winner. Rather, we
should be comparing options as an entire collective. Put differently,
when we are considering an option, we should be comparing it to the
entire set of alternatives. If that’s right, then even the ideal decision
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maker would violate IIA.
For example, suppose you collect vinyl records and you’re on va-

cation somewhere to visit a vinyl shop. You see two records, both
of which tend to be difficult to find. Let’s say you prefer record A
over record B. As you head to the counter with A in hand, you over-
hear some people talking about a stash of counterfeits that have been
made of A. Such a copy, call it C, is widely available, is also at the
store as a kind of gimmick, and it’s noticeably “cheaper looking”
than A. So let’s say you prefer A over a copy C, and you also pre-
fer record B to C. To many people it seems perfectly reasonable to
think that the popularity of C makes A look less attractive, such that
your preferences shift to prefer B over A. After all, B is more unique,
seeing as it’s not the sort of thing that there are as many copies of.
(Similarly, we might run the story the other way so that instead of
there being copies of A, there are lots of copies of B, but this time the
fact that there are more copies makes B more special to you because
you would have an original.)

We’ll see other theoretical arguments against IIA in more detail
when we look at the Allais paradox. To appreciate that argument,
we first need to understand the rule for maximizing expected utility,
which we’ll cover in the next chapter. The key difference we’ll see
between maximizing expected utility and the rules we’ve looked at
in this chapter has to do with how they incorporate uncertainty. But
first, let’s look at one more application of cardinal utilities.

4.3.2 Multiattribute Approach

In a single-attribute approach, we are forced to make direct compar-
isons when making decisions. This leads to us making comparisons
between things like lives and money: at what point is the dollar cost
of a search and rescue too high to save the lives of a few teenagers
lost at sea? Here we are placing money and lives and a single utility
scale.

In a multi-attribute approach, we allow for there to be multiple
scales. Which scales are used depends on the attributes relevant to
the decision. In the above example, we might use money to mea-
sure the financial costs of a search and rescue, and use number of
lives saved as the scale for human welfare. The next step is then to
determine how to aggregate the attributes into some overall ranking.

Here’s an example. Suppose a politician is deciding on extending
the search and rescue mission for the teenagers lost at sea. There are
three attributes under consideration: the cost in dollars for each day
of search, the number of lives saved, and the political implications
(e.g., getting or losing votes). The politician is considering three op-
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tions: end search, extend search one week, extend search indefinitely.
For simplicity’s sake, we’re going to imagine that there’s only one
overarching world state (say, that the teenagers are still alive). For
each outcome, the politician could use an ordinal ranking (i.e., a 1

means least preferred, not 1 life saved). Note that even though there
is only one world state at the moment (Teens Alive), the outcome for
End Search and Teens Alive has three compartments, one for each of
the three attributes.

Money Lives Votes

End Search 3 1 1

Extend One Week 2 3 2

Extend Indefinitely 1 2 3

Unfortunately for the politician, there is no dominant option;
dominance reasoning will not provide guidance for what to choose.
The politician is not limited to the ordinal scale, however. We could
instead use an interval (or quantitative) scale. By interpreting the
numbers in the above table as cardinal numbers, we can then weight
the values of the outcomes with how important each attribute is.

Weighting by additivity
In order to assign weights, we need to assume that they are addi-

tive and that the sum of the weights is equal to 1. Let’s suppose that
each attribute is equally important as any other. Then since we have
three attributes, each one is assigned 1/3. The value of an option for
the overarching outcome is then the weighted sum of its subdivided
outcomes. For example, the option Extend One Week has a value of
2 × 1/3 + 3 × 1/3 + 2 × 1/3 = 2.333. Performing the analogous
calculations for the other two options reveals that Extend One Week
has the maximum value.

Money (1/3) Lives (1/3) Votes (1/3) Aggregate

End Search 3 × 1
3 1× 1

3 1× 1
3 =1.667

Extend One Week 2 × 1
3 3× 1

3 2× 1
3 =2.333

Extend Indefinitely 1 × 1
3 2× 1

3 3× 1
3 =2.000

Suppose instead that Votes is the most important thing for the
politician. We might say, for example, that votes are twice as impor-
tant as lives, and lives in turn are twice as important as money, i.e.,
Votes are weighted 4/7, Lives at 2/7, and Money at 1/7. Using these
weights the Extend One Week option has a (rounded) value of 2.286,
but the Extend Indefinitely option has a (rounded) value of 2.429. So
different weightings of the attributes can lead to different recommen-
dations.
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Money (1/7) Lives (2/7) Votes (4/7) Aggregate

End Search 3 × 1
7 1× 2

7 1× 4
7 =1.286

Extend One Week 2 × 1
7 3× 2

7 2× 4
7 =2.286

Extend Indefinitely 1 × 1
7 2× 2

7 3× 4
7 =2.429

Don’t forget that the columns in this table are all under the state
assumption of Teens Alive. You’ll have something similar for the
state Not Alive. Later we’ll see how we can combine states and utili-
ties by using probabilities, but that’s in the next chapter.

Non-additive strategy and general challenges
This weighting strategy of the multi-attribute approach assumes

that the attributes are additive, i.e., that their relative importance can
be summed. Consider again a criticism of the completeness axiom,
which can be launched similarly here. The aggregation of attributes
on a scale from 0 to 1 that sum in total to 1 is no different than com-
paring objects on a single scale. It’s the same problem, we’ve just
moved from comparison of objects to comparisons of attributes.

Using non-additive criteria is one strategy for sidestepping the
above objection while still handling incomplete preference order-
ings. Suppose each attribute has an aspirational level such that if that
minimum level is not achieved, then the corresponding option or
alternative is disregarded, even if that option ranks highly in other
attributes. For example, suppose that we set the aspirational level
for each of the attributes above at 2. Then End Search and Extend
Indefinitely will be disregarded because each of them has at least one
outcome below 2. Notice that on this strategy the attributes aren’t
being compared on some single scale. Each attribute gets to set its
own level and then we check to make sure that the options meet that
minimum level.

A severe complication of this non-additive strategy is specifying
aspirational levels for each attribute: there seems to be both arbitrari-
ness and vagueness to the levels.

There are concerns related to multi-attribute approaches gener-
ally. Without some theory for individuating attributes, it is possible
that the strategy leads to conflicting recommendations (whether or
not they are additive). For example, suppose that a medical prod-
ucts agency is deciding whether to approve a new hand cream. It is
unknown whether the long term effects of the hand cream leads to
increased toxicity. Toxicity may then be taken as a relevant attribute.
Let us suppose that while for half the population the hand cream
increases toxicity, for the other half of the population the cream ac-
tually leads to a decrease in toxicity. We can suppose that whether
it does or doesn’t depends on something genetic. If we conceive of
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toxicity as a single attribute, then the average increase in toxicity is
zero because one half of the population cancels out the other. By
these lights, the hand cream might get approved. It seems reasonable,
however, to characterize toxicity in terms of two attributes: “toxicity
for people with gene A” and “toxicity for people with gene B”. If we
individuate attributes in this way, the recommendation may be to not
approve the hand cream if the risk for people with one of the genes is
sufficiently large. So here is an example where there are two different
ways of aggregating risks that lead to conflicting recommendations,
and since we have no way of determining which is the correct way
of individuating attributes, a multi-attribute approach does not solve
the problem of dealing with incomplete preference orderings.

4.4 More Challenges and Final Remarks

There is much more to be said about the notion of utilities. Even
in the more minimal case of preference-based theories, we assume
that they are transitive and complete. Moreover, we have implicitly
assumed that a person knows what their own preferences are, at
least in the moment. But there are good reasons for thinking that in
many scenarios we don’t know our own preferences and look towards
others to either discover or create our own. We also have reasons
for thinking that preferences can change over time, and in some
cases it seems that the way our preferences change is not predictable
beforehand.

Even if individuals had unchanging preferences that they knew
perfectly, there are good reasons for treating utilities across time
differently. It seems plausible to think that a unit of utility is more
valuable today (from your perspective on the present day) than it is
ten years from now. After all, there’s no guarantee that you’ll live
another ten years to obtain that unit of utility, and it’s far more likely
that you’ll live through today. Investing money illustrates a similar
idea quite nicely. $1,000 dollars today is worth more than $1,000 next
year (even if we increase this amount to account for inflation) because
you can invest it today and turn it into more than $1,000 by next year
(market crashes notwithstanding). For these sorts of considerations,
we often discount our future selves in the decisions we are making in
the present. That is, while it is important to think about yourself in
the future, the preferences of your future self should not be given the
same weight as you in the present. Again, who knows if your future
self even comes to be: as the famous economist Maynard Keynes
said, “In the end we are all dead.”

Interesting, it’s not clear whether we should apply the same sort
of thinking when we are considering decisions at the aggregate or
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group level. Unlike the guarantee that your life will come to an end
and we have a decent sense of how long you will not live, the life of
communities is far more open-ended. In fact, society is likely to go
on far longer than individuals that it makes sense to model society as
if it were to go on forever - this is sometimes referred to as the ‘infi-
nite life’ assumption in economics. Without an endpoint in sight, it’s
not clear how much we should be discounting future generations. In
fact, some philosophers and economists suggest that, given that we
have some moral obligations to future society, we shouldn’t discount
future generations at all. Frank Ramsey said, “In time the world will
cool and everything will die, but that is a long time off still, and its
present value at compound discount is almost nothing.” So while the
death of individuals warrants the application of a discount function,
the death of society is so far off that the "same’ ’ reason does not ap-
ply here. Once again we see there is a kind of discontinuity between
decision making at the level of individuals and the level of groups.

All of these considerations raise interesting questions about how
preferences affect decision making. But we need to return to the
idea of an expectation in the first place. To do that, it is not enough
to just think in terms of utilities. We have to be more explicit about
the notion of a probability, like we used in lottery option procedure,
and how they are used in models of decision making. We turn to that
next.

Exercises

1. Suppose we have a utility scale that goes from 0 to 5 and we’re
trying to determine what utility Alice assigns to an option called
D. We know that Alice has the preference ordering of A ≻ D ≻ C.
Suppose we present Alice with a lottery option L and we deter-
mine that Alice said D ∼ L when L consists of 60 tickets of A and
40 tickets of C.

• What utility does D have for Alice assuming that A is 5 and C is
0?

• What if instead A is 4 and C is 3?

2. Which interpretation of cardinal utilities (hedonism, objective list
theory, or preference-based) do you find most compelling? Why?

3. Provide an application of the minimax regret rule to one of your
own decisions. Remember you will need two tables, one is the
standard utility table, the second is the table of regrets (which you
calculate from the utility table).
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• Does the recommendation of the minimax regret rule corre-
spond with your intuition about what to do?

• Does your example obey the principle of independence of irrele-
vant alternatives?

4. Provide an application of the multiattribute approach to one of
your own decisions, using weighting by additivity.

• Does the recommendation of the multiattribute approach corre-
spond with your intuition about what to do?

• If not, is there any way to update the weights so that it would?
• If so, how much could you change the weights so that the ap-

proach would make a different recommendation?





5
Expected Utilities

We developed the lottery option procedure to help us build interval
scales for people’s preferences, which lets us both order preferences
and say how much more one thing is preferred to another.1 But we 1 Recall how the lottery option proce-

dure worked: given options A≻B≻C,
where A and C make up a lottery L,
what percent of L’s tickets need to be A
in order for the person to be indifferent
between A and B? The percent of A
tickets is the percent of B’s desirability
of A.

noted a curiousity about this procedure. Saying that you prefer a
lottery is quite a different thing than saying you prefer a particular
outcome, like a book. It seems intuitive enough to think about se-
lecting book B rather than another: we purchase it, put it beside our
bed, read it, etc. But what does it mean to act on or choose a lottery?
Yes, you can purchase a ticket. But you can’t choose the winning ticket
in the sense that your choice guarantees the ticket is a winning one.
Whether your ticket wins or loses is the outcome of some chancy
process. How can we make better sense of this?

The central concept that will help us here is expectation. Informally,
we think of expectations as strong beliefs that something will occur.
When walking I almost always expect that the ground will support
my weight. When I set my alarm I expect it to wake me up. When I
work at my job I expect to get paid. These examples are in contrast to
things we might merely hope or desire to be true.

There is also a more technical meaning of what it is to have an
expectation. Here we make use of the concept of probabilities in
making a kind of measured prediction. We move away from a strong
belief that something will occur, and more towards what could occur
to some degree of chance.

5.1 Expected Utility by Example

Here is an example. Suppose you have a rash on your hand. In half
of all cases the rash goes away by itself, for the other half it doesn’t.
So, if you do nothing, there’s a 50/50 chance the rash gets better.
There’s an over the counter cream you can use that helps the rash get
better, but it’s not perfect: 85% of the time the rash goes away, but
there’s a 15% chance that it continues even when using the cream.2 2 Notice that we’re not being as careful

like we have in the past. Here the “rash
gets better” state is at least somewhat
in our control (our choice affects the
probabilities of the outcome). But
there’s also aspects of the cream that
are outside of our control, like the
sensitivity of your skin and the efficacy
of the cream given your skin. It’s
arguably a feature that we don’t have
to be as careful, but we’ll return to this
point when we get to probabilities.
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Rash gets better Rash continues

Use Cream 85% 15%
Do Nothing 50% 50%

The notion of expectation that we are going to use combines this
kind of information about probabilities with cardinal utilities. In fact,
we’ll have a new strategy called maximize expected utility, which
will use information about how probable outcomes are, like in the
table above, in combination with our utilities of those outcomes. That
is, we use the probabilities to weight a preference assignment.

To make the example easier, let’s think of utilities in terms of
money.3 There are two costs we need to think about: the cost of the 3 Some authors will distinguish between

expected monetary value and expected
utility in order to acknowledge the con-
cerns we raised in the previous chapter.
Here we’re just trying to highlight how
to think about expectation, and so for
most of this chapter we’ll treat utilities
and monetary value the same.

over the counter hand cream and the cost of seeing the doctor if the
rash continues. (Strictly speaking, there is also a third “cost” if we
assume that the price of doing neither is $0.) Let’s say that the cost
of the hand cream is $20 and the cost of going to the doctor is $100.
In the event that you tried the hand cream and it didn’t work, you
still have to go to the doctor (who may prescribe a stronger cream),
so you’re paying both costs. In terms of a preference assignment, we
then get the following table.

Rash gets better Rash continues

Use Cream -$20 -$20+(-$100) = -$120

Do Nothing -$0 -$100

If all that matters are these utilities, then we can apply the rules
we used in the previous chapters. For example, dominance reasoning
would tell us not to use hand cream because for each state, the option
not to use cream is better (i.e. less expensive) than the option to use
cream.

But utilities are not all that matter. We also have other information:
the probabilities of each of these outcomes.

The rule for maximizing expected utility proceeds in two steps:

- Step One: combine the utility and probability tables to calculate the expected utility of each option.

- Step Two: select the option with the maximum expected utility.

Let’s go through these separately.

5.1.1 Step One: Compute EU of each option

Here’s how we calculate the expected utility of an option. First, for
each outcome, multiple the utility of that outcome (using the utilities
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table) by the probability of that outcome (using the probability table).
Second, take the sum of these products.

For example, to calculate the expected utility of using cream, I
would first do this:

Rash gets better Rash continues

Use Cream -$20 x 0.85 -$120 x0.15

Which gives me this:

Rash gets better Rash continues

Use Cream -$20 x 0.85 = -$17 -$120 x0.15 = -$18

I then take the sum of these outcomes, which is -$35. We say that
the expected utility of using the hand cream is a loss of 35 dollars
(recall we’re ignoring a bunch of complications for now, like whether
the hand cream makes my hands feel greasy, how my hands smell,
etc.). We’ll represent this expected utility as EU and put it in as col-
umn to the very right, being careful not to interpret that column as
another state.

Rash gets better Rash continues EU

Use Cream -$17 -$18 (-$17) + (-$18) = -$35

We then do the same computation to calculate the expected utility
of Do Nothing. So our complete table would look like this (showing
the work for Do Nothing):

Rash gets better Rash continues EU

Use Cream -$17 -$18 -$35
Do Nothing -$0 x 0.5 = $0 -$100 x 0.5 = -$50 (-$0)+(-$50) = -$50

This makes up our first step.

5.1.2 Step Two: Find maximum EU

Once we have our table where we have calculated the expected util-
ity for each option, we then look for which one is the maximum. We
have to be a bit careful here, because the signs of the numbers mat-
ter, not just the magnitude. So while $50 is more than $35, what we
are concerned with is avoiding the loss of money. In other words,
when utilities are positive we want to take the largest one, but when
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utilities are negative we want to take the smallest one. In the current
context the utilities are negative, so we are trying to maximize the
least amount of loss. Hence the option with the maximum expected
utility is Use Cream. We’ll sometimes put an explanation point be-
side the maximum expected utility number.

Rash gets better Rash continues EU

Use Cream -$17 -$18 -$35!
Do Nothing $0 -$50 -$50

If two options have the same expected utility, and all other ex-
pected utilities are smaller than those options, then there is a tie.
A common suggestion is that such ties mean that either option is
equally as good (or least bad) as the other. We will see, however,
that we might want to be more nuanced than merely maximizing
expected utilities. For example, it’s possible that two options have the
same expected utilities, but one of them has a higher “risk” in that
one of the outcomes has a very low utility, but also a very low prob-
ability. We will consider such possibilities shortly when we examine
criticisms of the strategy of maximizing expected utilities.

5.2 (MEU) Maximize Expected Utility Strategy

It will be helpful to have some notation. Let’s say that U(A|S1)

means "the utility of option A given state 1’ ’. So we could write
U(Use cream|rash gets better) to refer to the $20 cost. Or we could
write it like an equation. Here’s how we might refer to the case
where we use cream and the rash continues:

U(Use cream|rash continues) = −$120

In addition to using U to refer to utilities, we also need a handy
way to refer to the probabilities of outcomes in a probability table.
Let’s use P(A|S1) to mean the probability of the outcome when op-
tion A is selected and state 1 occurs. So in order to refer to the chance
that the rash gets better given that you use hand cream, which is
85%, we would write

P(Use cream|rash gets better) = 0.85

Now that we have a way to refer to utilities and a way to refer
to probabilities, we can write down a general way of how expected
utilities are calculation. The expected utility of an option (say A)
where there are two states can be written like this:4 4 Don’t forget your order of operations!
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EU(A) = P(A|S1)× U(A|S1) + P(A|S2)× U(A|S2)

Plugging in the numbers from the table above for the hand cream
option, we would get this:

EU(Use Cream) = (0.85 ×−$20) + (0.15 ×−$120)

= −$35

Similarly, the expected utility for not using the hand cream would
be:

EU(Do Nothing) = 0.5 ×−$0 + 0.5 ×−$100

= −$50

As illustrated in the above example, once we have calculated the
expected utility for each option (i.e. each row in our tables), then we
pick the maximum of all the utilities. Note that this strategy works
whether there are just two options, or if there are three, four, etc. The
first step is a calculation of the expected utility for each option, which
is done independently for each row. So the addition of another row
doesn’t make a difference to how the other options were calculated
(well almost - we’ll see later that we’re making an important assump-
tion here!). It’s only in the second step that might be affected, but
here we need to have calculated the expected utility for each option
before we can go about selecting the maximum one.

Note that we have a difference in recommendations from
some other rules. Dominance reasoning would tell us not to use the
hand cream. But dominance reasoning ignores some important infor-
mation about the chances of the different outcomes happening. One
way to incorporate that information, in fact the most common way to
do so, is to weight the utility of the outcome with the probability of
that outcome.5 When we do that for each outcome for a given option 5 The idea of “weighting” is what the

operation of multiplication is doing
here.

and then add them up, we get the expected utility for that option. If
we then compare the expected utilities of each option, at least for the
example we’ve considered above, we get a different recommendation:
don’t use the hand cream.

The maximize expected utility rule is the predominant strategy in
the field of decision theory.6 It is a very rich strategy. For example, 6 That’s not to suggest it’s always as

simple as we’ve been illustrating, but
it is at the heart of many decision
analyses.

we can actually recover the recommendation that dominance rea-
soning gave us. In order to do that, we ignore the information that
using hand cream improves the chances of the rash getting better.
We can represent this ignorance by giving each outcome for a given
option the same probability. That is, we use the following table of
probabilities:
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Rash gets better Rash continues

Use Cream 0.5 0.5
Do Nothing 0.5 0.5

Notice that the probability in a given row add up to 1. That’s
because the states are exhaustive in each given option. That is, if I use
the hand cream, my rash will either get better or it won’t - there are
no additional things that can happen. The same is true if I don’t use
it: either the rash goes away or it doesn’t.

Now if we plug these numbers into our expected utilities, we get

EU(use cream) = 0.5 ×−$20 + 0.5 ×−$120

= −$70

and

EU(don’t use cream) = 0.5 ×−$0 + 0.5 ×−$100

= −$50

Notice that when we take the maximum of these7 then the maxi- 7 Remember again these are represent-
ing costs.mize expected utility rule says not to use the hand cream. That’s pre-

cisely the recommendation that dominance reasoning originally gave
us!

The main takeaway is this. When we are in the context of making
a decision under ignorance where we don’t know what the proba-
bilities of outcomes are, the dominance principle is usually the “go
to” rule that is first tried (and sometimes it doesn’t give us a rec-
ommendation). In the context of making a decision under known
risk, we have information about the probabilities of outcomes and
we use that information to calculate expected utilities, which in turn
are maximized. Interestingly, we can use the decision rule of maxi-
mize expected utility to also represent the dominance strategy. We do
this by "ignoring’ ’ the probabilities of outcomes by making them all
equally likely. In a rough way, then, maximize expected utility (MEU)
is a generalization of the dominance principle, at least in terms of the
recommendations MEU makes.

We say “in a rough way” because the recommendations that the
dominance strategy and MEU make can come apart. In fact we have
already seen this in the introduction. Recall Newcomb’s Problem where
you can either pick the contents of just box A or the contents of both
box A and box B. The utility table looked like this:
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AI predicts two box AI predicts one box

One box (just A) $0 $1,000,000

Two box (A and B) $1,000 $1,001,000

Dominance reasoning makes the recommendation to select the
Two Box option, because whatever the AI predicted, you get an extra
$1,000. But dominance reasoning ignores the probabilities of each of
the outcomes. In the description of the setup we said that there is a
very strong correlation between what options people pick and what
the AI predicts. So if you pick the One Box option, then the probabil-
ity that the AI predicted that you would pick that option should be
high, very high. It might not be perfect, but we can suppose that the
AI is right 99% of the time. So, the probability table might look like
this:

AI predicts two box AI predicts one box

One box (just A) 0.01 0.99

Two box (A and B) 0.99 0.01

Following the steps we outlined above for the MEU stragey, we get
the following expected utilities for each option:

EU(OneBox) = (0.01 × $0) + (0.99 × $1, 000, 000)

= $990, 000

EU(TwoBox) = (0.99 × $1, 000) + (0.01 × $1, 001, 000)

= $990 + $10, 010

= $11, 000

Let’s add these to our utility table.

AI predicts two box AI predicts one box EU

One box (just A) $0 $1,000,000 $990,000!
Two box (A and B) $1,000 $1,001,000 $11,000

Clearly the One Box option has a much higher expected utility
than the Two Box option! So, in contrast to the dominance strategy
recommendation, the MEU strategy recommends that you should
select just box A.

We have in a sense made interesting progress, and in another
sense we have not. We have made progress in the sense that we can
be more precise in how we describe the two different ways of rea-
soning about what do to in the Newcomb Problem. We have not yet
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made progress in providing an argument for whether we should
use dominance reasoning or MEU. But the fact that we can be more
precise about the two reasoning processes means we have a better
understanding of what background assumptions each one is making.
In turn, by analyzing those assumptions we can consider arguments
for and against each of the two strategies. Much of the progress that
has been made in decision theory has come from these kinds of anal-
yses, which we’ll cover in due time.

Next, we’re going to look at an application of MEU that builds
from a previous example.

5.3 Application: Combining MEU and the Multi-Attribute Ap-
proach

In the multi-attribute approach we covered, we showed how utilities
might come from multiple scales. We used an example of a politician
combining three scales (money, lives, and votes) to make a decision
about a search and rescue mission for some teenagers lost at sea. The
politician is considering three options: end search, extend search one
week, extend search indefinitely, and we supposed that there were
two possible states: Teens Alive and Teens Not Alive.

It was crucial in that example that we were focusing on just the
state Teens Alive. As a reminder, the final utility table for the Teens
Alive state was this:

Money (1/7) Lives (2/7) Votes (4/7) Aggregate

End Search 3 × 1
7 + 1× 2

7 + 1× 4
7 =1.286

Extend One Week 2 × 1
7 + 3× 2

7 + 2× 4
7 =2.286

Extend Indefinitely 1 × 1
7 + 2× 2

7 + 3× 4
7 =2.429

What the aggregate utility in the very right column represents is
the “fusion” of all the different scales (money, lives, votes) into a sin-
gle utility value. To do that we weighted the utility of an outcome by
how important the relevant scale (the column) was to the politician.
Notice that the weights assigned to the columns here are not the same
as the probabilities that we use to weight utilities when calculating
expected utilities of outcomes. To see this, notice that the decision
problem for the politician needs to include both the Teens Alive state
as well as the Teens Not Alive state. In other words, the full decision
problem is given by the table below, which is only partially filled in
using the aggregate values from the table above.
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Teens Alive Teens Not Alive EU

End Search 1.286 ? ?
Extend One Week 2.286 ? ?
Extend Indefinitely 2.429 ? ?

In order to fill in the missing utilities under the Teens Not Alive
column, we have to first use the multi-attribute approach to find the
aggregate utility for each outcome under that state, using the same
weighting as we did before. Recall that we supposed the politician
thought lives are weighted twice as much as money, and that votes
are weighted twice as much as lives. So we know what the weights
are. What we need to do is figure out what the utilities are for the
three options now that we’re considering the state Teens Not Alive.
This can be and probably would be different than the utility table we
had from before. If the teens are not alive, then it seems that ending
the search sooner would be better than later for all three scales: doing
a search and rescue costs money, puts additional lives at risk, and
voters aren’t typically fond of wasting money. With that reasoning,
the politician might use the following multi-attribute table for the
Teens Not Alive state.

Money Lives Votes

End Search 3 3 3

Extend One Week 2 2 2

Extend Indefinitely 1 1 1

As before, the politician would then weight these to calculate an
aggregate:

Money (1/7) Lives (2/7) Votes (4/7) Aggregate

End Search 3 × 1
7 + 3× 2

7 + 3× 4
7 =3.000

Extend One Week 2 × 1
7 + 2× 2

7 + 2× 4
7 =2.000

Extend Indefinitely 1 × 1
7 + 1× 2

7 + 1× 4
7 =1.000

Now we can use those aggregate utility numbers to fill in the
utilities under the Teens Not Alive state in our decision matrix:

Teens Alive Teens Not Alive EU

End Search 1.286 3 ?
Extend One Week 2.286 2 ?
Extend Indefinitely 2.429 1 ?
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The maximize expected utility rule will now weight these utilities
with the probabilities of the states. Here is the place where the politi-
cian will need to collect some information about the world. They
might consider success rates of past rescue efforts that are similar
to this situation. They might consult some survival experts, locals
who travel on the water in that area, weather reports, etc. Suppose at
the end of all these considerations, the politician’s assessment is that
Teens Alive is three times more likely than Teens Not Alive, i.e. that
the Teens Alive state has a 75% chance while Teens Not Alive has a
25% chance. Now the politician can calculate the expected utilities for
each option (rounding to four decimal places):

Teens Alive Teens Not Alive EU

End Search 1.286 x 0.75 + 3 x 0.25 =1.7145

Extend One Week 2.286 x 0.75 + 2 x 0.25 =2.2145

Extend Indefinitely 2.429 x 0.75 + 1 x 0.25 =2.0718

The maximize EU rule then recommends that the politician extend
the search for one week.

This example illustrates the richness of the maximize expected
utility rule. It helps us organize a variety of considerations about a
decision and tells us how to combine these into a recommendation.
We first need to determine the utilities of each outcome, which we
did using the multi-attribute approach. We then need to assess the
probabilities of the states, which we gestured at here and we will
return to in more detail shortly. MEU then tells us to weight the util-
ities by the probabilities of the states to arrive at a final expected
utility for each option. There are many ways that real decisions in-
troduce further complications, particularly in how to estimate the
probabilities of states. But such complications don’t change the un-
derlying principle of MEU. It is no wonder that MEU is one of the
most common ways of representing decision problems to make rec-
ommendations.

That said, we do have to take some care in the kinds of inputs we
give to MEU. In the next section we’ll illustrate this using a historical
example.

5.4 Pascal’s Wager

Let’s see what happens if we assume that states can have probabili-
ties of one or zero, or what happens if utilities can be infinite. We’re
going to use Pascal’s Wager as an illustration of some concepts, not
as an analysis of Pascal’s actual argument, which is concerned about
the relationship between faith and reason.8 8 The Stanford Encyclopedia of Phi-

losophy has a great entry on Pascal’s
Wager.

https://plato.stanford.edu/entries/pascal-wager/
https://plato.stanford.edu/entries/pascal-wager/
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In this wager, the states are either that God exists or God does not
exist. The options are that we believe in God or we disbelieve. Let’s
set up the framework for our decision table:

God exists (G) God does not exist (¬G)

Believe (B)
Don’t Believe (¬B)

So far we haven’t said anything about the probabilities of the out-
comes nor the utilities. Let’s think first about the utilities. Again,
we’re going to oversimplify for illustrative purposes. If God exists
and I am a believer, then I go to heaven and have eternal life. Pre-
sumably heaven is a pretty good place where the “party’ ’ literally
never ends - it goes on for eternity. So that means that the amount
of utility I would get is infinite. Even if there are some bad days in
heaven (but that’s probably not true) the number of good days will
be larger, and so the net amount is an infinite number of positive util-
ities, i.e., +∞. If, on the other hand, I don’t believe in God and God
does exist, then I will experience eternal hell, i.e., -∞.

What about the outcomes under the state where God does not
exist? In that case my life is finite and the cumulative number of
utilities I will experience, positive or negative, will also be finite.
Now let’s assume that being a believer comes with some costs: a
believer volunteers their time when they’d rather be watching sports,
or they give away a larger amount of their income to charity than
a disbeliever, or they choose not to imbibe when they really would
prefer to drink, etc. Let’s say for a believer there is a finite net cost
(-c) and for the disbeliever there is a finite net gain (+c).

From these assumptions, we have the following utility table:

God exists (G) God does not exist (¬G)

Believe (B) +∞ -c
Don’t Believe (¬B) -∞ +c

Before we try to add any information about the probabilities of
outcomes, notice that the dominance principle does not make a
unique recommendation. If God exists, it is better to believe than
not to, and if God does not exist it is better not to believe than to
believe.

In order to see what maximize expected utility (MEU) recom-
mends, we have to include probabilities for the outcomes so that we
calculate expected utilities. As a first approach, let’s use the idea
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above to make each state equally probable. In that case we would
have the following probability table.

God exists (G) God does not exist (¬G)

Believe (B) 0.5 0.5
Don’t Believe (¬B) 0.5 0.5

If we plug these numbers in to weight the utilities in our prefer-
ence table, we get the following expected utilities. For Believe the
expected utility is

EU(B) = P(B|G)× U(B|G) + P(B|¬G)× U(B|¬G)

= 0.5 × (+∞) + 0.5 ×−c

and for Disbelieve it is

EU(¬B) = P(¬B|G)× U(¬B|G) + P(¬B|¬G)× U(¬B|¬G)

= 0.5 × (−∞) + 0.5 ×+c

We needn’t get into too many details about mathematics involving
infinity. It’s enough to recognize that we can replace the symbol ‘∞’
with an arbitrarily large number. For our purposes, let’s say this
number is larger than c, even just by one. So let’s replace ‘∞’ by ‘c+1’.
For Believe it would look like this:

EU(B) = 0.5 × (+∞) + 0.5 ×−c

= 0.5 × (c + 1) + 0.5 ×−c

= 0.5c + 0.5 − 0.5c

= 0.5

And for Disbelieve it would look like this:

EU(¬B) = 0.5 × (−∞) + 0.5 ×+c

= 0.5 ×−(c + 1) + 0.5 ×+c

= −0.5c − 0.5 + 0.5c

= −0.5

It may seem that the expected utility for Believe is just a little bit
larger than the expected utility for Disbelieve, but remember that we
picked a number to replace the ‘∞’ symbol that was only a little bit
larger than c. There is no limit to how large this number could be,
so in effect the expected utility of Believe is infinitely larger than the
expected utility of Disbelieve!

Put differently, the multiplication by some infinite utility com-
pletely washes out whatever the finite negative cost is of believing,
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and similarly the multiplication of some negative infinite utility will
completely wash out the finite positive gain of disbelieving. Hence,
by this setup, MEU says we should believe.

Let’s consider for a moment an extreme setup where we assign
the state that God exists as having a probability of zero. In that case,
the left terms for both expected utility calculations are undefined
and we are left with a comparison between the finite losses and gains
of believing and disbelieving respectively. If we assign the claim of
God existing as having a probability of zero, then MEU would rec-
ommend not to believe. (Assuming that we can ignore the undefined
terms.)

But not so fast. Assigning a probability of zero to a proposition
means that we are 100% certain that it is false and we are 100% cer-
tain that its negation is true (in this case that God does not exist).
While we colloquially say things like "I’m 100% sure that I parked
my car in the Scratchy parking lot’ ’ we can’t take that as literally
true. Strictly speaking, the only propositions we should be 100% sure
of are logical tautologies and perhaps simple mathematical claims,
i.e., claims that are necessarily true. But the claim that God exists (or
not) is not necessary - it is a contingent claim. That is, at least from
our eyes, it’s at least possible that God exists (or does not). And hence,
while we might give one or the other a very high (or low) probability,
it should never be actually 1 or 0. In short, even the greatest skeptic
ought to be giving at least some non-zero value to both states.

With that in mind then, any non-zero probability is going to be
still washed out by some infinite utility, and so we are back to the
recommendation that we should believe.9 9 Again, to be clear, it was not Blaise

Pascal’s intention to establish that it
is necessary that we believe. Some
scholars argue that his intention was
to show that rationality can neither
support faith or a lack thereof.

There is, admittedly, something awkward or tricky going on here.
It seems that the presumption of an infinite utility is doing all the
work. None of the other numbers make a difference. As long as we
assign ∞ (infinite gain) to the outcome where we believe and God
exists, it doesn’t matter what else we assign to the other outcomes
(with the exception that it’s not another positive ∞ of utility). A critic
might say that setting U(B|G) = ∞ stacks the deck, so to speak. It
seems quite possible that heaven, however great, may have a very
large positive payoff, but it is not appropriate to say that it is infinite.
We may generally insist that whatever utilities we pick, no matter
how large, they must always be finite.

If we insist on such a constraint, so that our utilities always have
to be some finite number, and in addition insist that our states have
to be some non-zero probability, then it is possible that MEU recom-
mends Disbelieve. Here is an example of how that might work.

Suppose that Judy acknowledges that the utility of heaven is quite
high. She acknowledges that it could be several orders of magnitude
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higher than the value of the cost of believing, but it is not infinite.
For the sake of argument, let’s say it’s 1 million times higher, that is,
U(B|G) = 1M × c. And let’s say, again for the sake of argument,
that the negative utility of hell is the inverse of this, i.e., U(¬B|G) =

−1M × c. Judy’s preference table would then look like this:

God exists (G) God does not exist (¬G)

Believe (B) 1M × c -c
Don’t Believe (¬B) -1M × c +c

If Judy thinks that it’s equally likely that God exists as not, then
we get the following two expected utilities. For Believe it would look
like this:

Exp(B) = 0.5 × 1, 000, 000c + 0.5 ×−c

= 500, 000c − 0.5c

= 499, 999.5c

And for Disbelieve it would look like this:

Exp(¬B) = 0.5 ×−1, 000, 000c + 0.5 ×+c

= −500, 000c + 0.5c

= −499, 999.5c

So again, MEU recommends that Judy believe.
But not all things are equal according to Judy. If we ask Judy

what she thinks the probability of God existing is, she may tell us
that she doesn’t think it is equally likely. Let’s suppose she thinks
that the probability that God exists is low, very low. She tells us
that she thinks there’s a 1 in 10 million chance. That is, she thinks
P(G) = 0.0000001. While this is very small, it is a non-zero prob-
ability. Conversely, this means that she thinks there is a very high
probability that God does not exist. In fact it would be a 99.99999%
chance, or a probability of 0.9999999. Her probability table would
then look more like this:

God exists (G) God does not exist (¬G)

Believe (B) 0.0000001 0.9999999

Don’t Believe (¬B) 0.0000001 0.9999999

Now let’s look at what the expected utilities would be. For Believe
it is

EU(B) = 0.0000001 × 1, 000, 000c + 0.9999999 ×−c

= 0.1c − 0.9999999c

= −0.8999999c



decision theory 87

And for Disbelieve it would look like this:

EU(¬B) = 0.0000001 ×−1, 000, 000c + 0.9999999 ×+c

= −0.1c + 0.9999999c

= +0.8999999c

In this case MEU now recommends Disbelieve for Judy. How did
this happen given that Judy acknowledges that the positive utility
of heaven is super high and the negative utility of hell is drastically
low? The answer is part of the key insight of the maximize expected
utility rule: utilities are to be weighted by probabilities.

What should we say about all this? Does MEU recommend we
believe in God or not? Hopefully our walk through this example
illustrates that there is no definite answer. It depends. It depends on
what we think the utilities are and also what the probabilities are.
The maximize expected utility rule requires that we consider both.

Moreover, suppose in Judy’s estimation the MEU recommenda-
tion is to believe in God, but she just can’t seem to get herself to form
that belief. For her, the idea that there is some supernatural being
might just be too implausible. But maybe, Judy thinks, she can start
doing things that might cultivate certain beliefs, like regularly going
to sermons and doing daily Bible readings. This possibility highlights
a different kind of assumption that we have been making about the
timing of making choices and to what extent we are able to voluntar-
ily make them.10 10 It also highlights complications about

whether beliefs, desires, preferences,
and so on, are the sorts of things we
can reliable infer from what people
claim them to be (their self-reports), or
whether we have to look towards their
actual behavior (which always requires
us to make interpretations of them,
which themselves can be scrutinized).

For example, we might decide that we want to become a more pa-
tient person. That decision, however, is not a one-time event, nor is it
the sort of thing that many people can simply choose, like turning on
a light switch. Becoming a more patient person may require the de-
velopment of particular mental habits and learning how to cultivate
certain kinds of behaviors. Such decisions are extended over longer
periods of time and it is not obvious how MEU (nor dominance for
that matter) makes recommendations for such choices.

5.5 Key Take Aways

Recall that the rules we looked at like dominance reasoning did not
pay attention to the probabilities of outcomes. It is a central feature of
maximize expected utility that we pay attention to both probabilities
and utilities. Doing so means that we have to be particularly mindful.
High utilities can be substantially down weighted by low probabili-
ties. And likewise, high probabilities can be down weighted by low
utilities. According to MEU it is the expectation that should drive the
decision making, and the expectation is the sum of utilities that are
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weighted by probabilities. This is the key insight that moves us from the
more simplistic rules to MEU.

That said, while the math and concept underlying MEU is rel-
atively simple, the devil lies in the details of how we estimate the
probabilities of outcomes. We have been more or less assuming that
we are given the utilities and probabilities and the strategies we’ve
looked at tells us what to do when we have them. But that itself is
actually assuming quite a lot. In the coming chapters we will have
much to say about the nature of probabilities and how we arrive at
them.11 11 Admittedly we won’t spend much

more time talking about utilities and
desires - in part because there isn’t the
same kind of agreed upon theory of
them like there is for probabilities and
beliefs.

Moreover, there are lots of decisions that are more temporally-
extended than the sort where MEU is easily applicable. For example,
the MEU strategy seems like a useful way of deciding whether to buy
a raffle or lottery ticket: we usually know the cost of the ticket, the
gain of the prize if we win, and with some effort we can estimate the
probability of winning (if we can find out how many tickets there
are, for example). But the outcomes of decisions don’t always have
such clear-cut boundaries, and similarly the places where we “in-
tervene” with our choice isn’t a clear localized time point like the
purchasing of a ticket. It seems quite natural to ask ourselves ques-
tions like, “what kind of person to you want to be or become?” and
that choice is a complex sequence of decision making. This can be
illustrated starkly in Newcomb’s problem. The two-boxer might jus-
tify their choice by the fact that the one-boxer is leaving $1,000 on the
table. The one-boxer might respond by appealing to a more general
character: the type of person that tends to get $1,000,000 is the type
of person that picks just the one box, even though that choice in the
moment doesn’t cause that money to be there.

So there is much conceptual work left for us to do. We’ll think
about probabilities, assess the range of decision making problems
where MEU is applicable, and identify ways in which it might be
supplemented. But first, let’s examine some arguments for and
against MEU more generally.

Exercises

1. Suppose a slot machine pays off $25 a fiftieth of the time and costs
a $1 to play, and a video poker machine pays off $10 a twentieth
of the time and costs $2 to play. Which machine is the better bet in
terms of expected utility (assume here that money and utilities are
directly related)?12 12 This question is adopted from Weis-

berg’s Odds and Ends, Chapter 11,
Exercise 3.

2. You’re considering downloading a new game for your phone. The
game costs $0.99. But as a promotion, the first 50, 000 downloaders
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are being entered in a fair lottery with a $10, 000 cash prize. This exercise is from Weisberg’s Odds
and Ends, Chapter 11, which gave
credit to Exercise 2 from p. 95 of Ian
Hacking’s An Introduction to Probability
& Inductive Logic.

If you know you’ll be one of the first 50, 000 downloaders, what is
the expected monetary value of downloading the game?13

13 For this question and those below,
let’s assume that utilities and money
are the same, hence the expected
monetary value is just the expected
utility.

3. Suppose the government is deciding whether to enact a new tax.
If the tax is enacted, it will bring in $700 million in revenue.

This problem is based on an exercise
from Weisberg’s Odds and Ends, Chapter
11.

But it could also hurt the economy. The chance of harm to the
economy is small, just 1/5. But it would cost the country $1, 200
million in lost earnings. (The $700 million in revenue would still
be gained, partially offsetting this loss.)

Treat gains as positive and losses as negative.

a. What is the expected monetary value of enacting the new tax?

The government also has the option of conducting a study before
deciding whether to enact the new tax. If the study’s findings
are bad news, that means the chance of harm to the economy is
actually double what they thought. If its findings are good news,
then the chance of harm to the economy is actually half of what
they thought.

b. Suppose the government conducts the study and its findings
are good news. What will the expected monetary value of en-
acting the tax be then?

c. Suppose the government conducts the study and its findings
are bad news. What will the expected monetary value of enact-
ing the tax be then?

d. Suppose conducting the study would cost $5, 000. Will the
government conduct the study? Explain your answer. (Assume
they make decisions by maximizing expected monetary value.)

4. Casey has a phone that’s worth $300. The probability that she’ll
damage it and need to replace it is 1/5. Casey is offered an insur-
ance policy that costs $60 to replace her phone.

a. What is the expected monetary value of buying the insurance?
b. What is the expected monetary value of declining the insur-

ance?

5. Zack has a laptop worth $1, 000. Given his past, there’s a 1/5
chance he’s going to spill coffee on it and will need to replace it.
At what cost for an insurance policy would Zack be indifferent
between buying and declining the insurance?
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6. In the example with the politician you may have wondered
whether MEU would give a different recommendation if the politi-
cian had come to a different estimate for the probabilities of the
states, even if the utilities stayed the same.

• Are there any probabilities of the states where MEU would
make the recommendation to End Search? If not, why not? If
so, what are they? (Remember, the probabilites of the two states
have to sum to 1.)

• Are there any probabilities of the states where MEU would
recommend to Extend Indefinitely? If not, why not? If so, what
are they? (Remember, the probabilites of the two states have to
sum to 1.)

7. Feeling free to build on your own example from a previous exer-
cise, walk through an example where you use the multi-attribute
approach to generate utilities for a decision matrix. Then make an
assessment of the probabilities of the states, much like we did in
the politician example. Finally, apply MEU to determine what it
recommends. Your example should follow much like the politician
one from this chapter. You should have at least three tables, two
of which are part of the multi-attribute approach, and then a final
table where you do the expected utility calculations. Make sure
to explain your reasoning for how you constructed the tables. Re-
member that the states should be exhaustive and exclusive of the
way the world could be (the things outside of your control), and
the options should also be exhaustive and exclusive (the things in
your control that you want to choose between).



6
Arguments about MEU

We’ve been developing a theory of decision making called Maxi-
mize Expected Utility (MEU). As with the development of any the-
ory, it is a good idea to take a step back and consider: i) what is the
domain/range/scope of the theory? ii) what are some reasons for
thinking the theory is true? iii) what are some reasons for thinking
the theory is false? This chapter will examine some preliminary an-
swers to these questions.

6.1 The Domain of MEU

When we ask about the domain, range, or scope of a theory, we’re
asking what a theory is about. Number theory is a theory about
numbers, it is not a theory about fashion, social justice, or economic
systems. Jeremy Bentham’s Utilitarianism, or Immanuel Kant’s Deon-
tology, are theories about ethical actions, they are not theories about
the movement of celestial bodies, logical entailment, or the grammar
of German.

Maximize expected utility is a theory of decision making. We
need to take some care in what we take to count as a decision, such
that MEU is a theory of it. For example, perhaps there are “choices”
that we make that we don’t think fall under the purview of decision
making, and thus MEU isn’t an analysis of that. Some examples that
are, at best, fringe cases of decisions may include: when to fall asleep,
being surprised at the sight of a snake, whether and when to hiccup,
when to get hungry or dehydrated, etc.1 1 Even these examples are a bit tricky,

since we do seem to have some indirect
way of nudging the times at which
these things happen. E.g., if I eat at
noon but then nothing else, there’s a
good chance I’m going to get hungry
between 4pm and 7pm. But still, I don’t
really seem to choose the moment I get
hungry.

Relatedly, we need to also recognize that MEU is a mathemati-
cally precise theory of phenomena that are not typically so precise.
That by itself is neither a point for nor against it. We have all sorts
of examples where theories are more process than the real world ap-
plications require. Think of theories behind baking: it won’t matter
much whether your oven is 350 or 351 degrees for the cake to bake.
What matters is that the theory (or in this case recipe) is an idealized
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version of something that is more approximate, and so that to the ex-
tent that the approximation is close enough, the theory gets the right
answer or prediction.2 2 We make all sorts of idealizations.

Think of distances between cities: Is it
really exactly 32 miles?

For the domain in question, there are all sorts of ways that or-
dinary people make decisions that aren’t exactly like what MEU
describes or prescribes, but are close enough. We almost never, for
example, have in mind utility values that can be represented numer-
ically. We also have mistaken beliefs about how the world works
and our probability tables will not perfectly match the truth. Such
imperfections are to be expected.

So what is MEU a theory of? It is a theory of choices that are made
when we determine the approximate value of each relevant outcome,
determine the approximate probability of each of these outcomes,
and then use that information to estimate the expected value of each
option. To the extent that choices are made in this way, is the extent
to which MEU applies. Call these kinds of choices instances of stan-
dard decision making.

Standard decision making is closely connected with, and some-
times treated the same as, the concept of rationality. Rationality is a
normative concept. As such, there is a three way distinction. There is
the domain of the non-rational (or arational), the irrational, and the
rational. The non-rational are those behaviors or decisions that we
take to be outside the scope of rationality. This is the class of things
where we think normative considerations are not applicable; it in-
cludes those things that we think are neither rational nor irrational.
As an extreme example, the fact that unsupported pens fall to the
ground is neither rational nor irrational - it is non-rational.3 Similarly, 3 Some authors use ‘arational’ to mean

the same thing.the examples we listed above, like the very moment we fall asleep,
whether or when we hiccup, etc., are not the sorts of behaviors we
would ascribe rationality to, and hence are non-rational.

While many behaviors are non-rational, there is a set of behaviors
for which we are willing to ascribe reasons, i.e., that can be scruti-
nized with an eye towards justifying (or failing to justify). That is the
domain to which standard decision making applies and that MEU
is a theory of. Here, when a choice is made with a good reason, that
should be consistent with what MEU recommends. On the other
hand, if a choice is made with a bad reason, then that should be at
odds with what MEU recommends. To this end, we can understand
MEU as a kind of theory of rationality (or, standard decision mak-
ing).

There are interesting cases where it seems that choices are not
made in the standard decision making way, and thus MEU does not
apply. The philosopher L.A. Paul has argued that the decision to
have a first child is one such example.4 Many websites, life-coaches, 4 See her paper “What You Can’t Expect

When You’re Expecting” and her later
book Transformative Experiences.
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and family advisors give the impression that the decision to have a
first child is a quintessential example of standard decision making
that MEU is about: you are encouraged to think about the utilities of
outcomes (how much satisfaction do you expect to get from being a
parent?) and weight them by their probabilities (what are the chances
that you will have a healthy child?) to estimate the expectations of
the options to have a child or not. But L.A. Paul argues that contrary
to such impressions, the decision to have a child is not like this at all.
In fact, she argues that the decision to have a child is not a rational
one. To be clear, she is not saying it is irrational to have a child (or
not to). She is saying that it is a choice that is very different than
the types of decisions that we make that MEU is intended to be a
theory of. Or in our terminology: the choice to have a first child is a
non-standard decision, and arguably non-rational.

Her argument boils down to the following. There are two types
of transformations that can occur from the time before you have your
first child to after. One is called an epistemic transformation. The
claim here is that no one knows what it is like to experience having
a child until they have had one. It doesn’t matter if you’ve babysit a
lot and taken care of children generally. The claim is that you simply
do not have access to the relevant experience of having your own
child. Perhaps you will like it, perhaps you will feel depressed, you
simply don’t know. Moreover, you have no guides to predicting what
your experience will be like, no matter what experiences you have
had so far - that’s the idea behind the event being transformative.
If you believe that epistemic transformations are possible and that
having one’s first child is an instance of it, then it is not possible for
you to even get approximate utility values for the outcomes of your
decision. So the choice of whether to be a child is not an instance of
standard decision making.

The second kind of transformation is personal. In a personal trans-
formation, an event changes you in a profound way such that your
core preferences are affected. Having your first child is often said
to produce personal transformations in some people, and often in
unpredictable ways. If you believe that personal transformations are
possible and that having your first child is an example of that, then
again you have no way to use your current preferences as a guide
for thinking about what your preferences will be in the outcomes of
where you have your first child.

There is, L.A. Paul admits, a workaround that can convert the
choice to have a child so that it comes really close to being a standard
decision. The only thing we need to do in this workaround is not use
your current preferences, but instead use only “external” considera-
tions. Strictly speaking, the absence of using your current preferences
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as guides for approximating utility values makes this workaround
non-standard. Even if it is non-standard, we might still want to qual-
ify it as a kind of “rational” deliberation - but let’s leave that to the
side for a moment. What matters here is that this non-standard ap-
proach makes use of all the tools we have been describing as part of
standard decision making. So what is this workaround?

Let’s imagine there are four relevant groups that we will use as
our external considerations: i) Lucky Parents, ii) Unlucky Parents, iii)
Lucky Child-frees, and iv) Unlucky Child-frees. The Lucky Parents
class includes those individuals that chose to have a child and it
turns out that this outcome has an overall value that is higher than
had they remained childless. The Unlucky Parents are those people
who had a child but the value of this outcome is lower than had they
remained childless. Similarly, the Lucky Child-frees is the class of
individuals who remained childless and the value of that outcome is
higher than if they had had a child. And finally, the Unlucky Child-
frees are those individuals who remained childless but the value of
this outcome is lower than had they had a child.

Using these four groups, we can ask what the empirical evidence
is about their sizes. You could then use that information as a guide
to estimate which group you’re most likely to fall into. We’ll assume,
for the sake of illustration, that your preference is to be in the largest
group.5 5 As we’ll see later, this is probably not

the right way to make the inference.
What matters is the relative sizes of
the groups. Reasoning about (causal)
effectivness is tricky and we’ll learn
how to do it better in later chapters.

What does the empirical literature say? It is, as with a lot of sci-
ence, a bit mixed and in some cases controversial. But we can say at
least this much. There is little to no evidence that suggests that Lucky
Parents is much larger than Unlucky Parents, nor is there evidence
that Unlucky Child-frees is much larger than Lucky Child-frees.
Moreover, there is evidence that suggests that overall well-being is
likely to go down if you choose to have a child.6 6 See McClanahan and Adams (1989),

Simon (2008), and Evenson and Simon
2005. Some reports say that fathers
enjoy higher levels of life satisfaction,
but mothers do not (Nelson et al. 2013).

The takeaway of L.A. Paul’s argument is not about the rationality
or irrationality of having a first child. Her argument is an illustration
of what is and is not in the scope of a theory. She is arguing against a
common conception that the choice to have a first child is an instance
of standard decision making. As such an instance, there are either
good justifications or poor justifications and the choice is either ratio-
nal or irrational. But according to her argument, this way of thinking
of the choice is mistaken. Instead, she’s arguing that this choice is
either non-rational or at best non-standard. In either case, her point is
that the choice to have a first child is outside the scope of MEU.

For the rest of the chapter, we’re going to narrow in on the domain
of standard decision making and consider reasons for thinking MEU
is a good theory of it.
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6.2 Long Run Arguments for MEU

Let’s assume that we’re considering any example of standard deci-
sion making. Some of the most common arguments that MEU is a
good theory of such decision making are called “long run” argument.
Long run arguments claim that you will be better off in the long run
if you make decisions by maximizing expected utility. This argument
is based on the law of large numbers. Suppose that an outcome has a
probability p of occurring, e.g., the chance of rolling a one with a fair
six-sided die is 1/6 = 0.167. Then the law of large numbers says that
as the number of rolls (or ‘random experiments’) n increases towards
infinity, the proportion of rolls that lead to one will be 0.167. If you
roll only a few times, you might never see one, or you might see it a
high number of times, but as you roll the die hundreds of times, the
fraction of times you see one relative to the other numbers becomes
increasingly closer to 1/6.

When we apply this idea to decision making, we are saying that if
you face the same decision over and over again and use the maximize
expected utility strategy, then the utilities you will get on average will
converge to the maximum expected utility. For example, suppose that
you have a choice between getting $1 for sure, or getting $3 if a fair
coin lands heads and nothing if it lands tails. The expected utility of
the coin toss choice is $1.5, which is higher than the expected $1 of
the ‘for sure’ choice. If you only get to flip the coin once, then there’s
a 50% chance you’ll get nothing at all. But the law of large numbers
says that if you get to flip the coin many times, on average you’ll get
$1.5. So while choosing the ‘for sure’ option 100 times will lead to
$100, choosing the ‘flip coin’ option 100 times will, on average, yield
$150. For this reason, MEU recommends the ‘flip coin’ option.

How good is the long run argument? There is a famous phrase
from Keynes: “in the long run we’re all dead.”7 Let’s unpack how 7 Around the same time as Keynes,

Frank Ramsey had the following to say:
“In time the world will cool and every-
thing will die; but that is a long time off
still, and its present value at compound
discount is almost nothing. Nor is the
present less valuable because the future
will be blank. Humanity, which fills
the foreground of my picture, I find
interesting and on the whole admirable.
I find, just now at least, the world a
pleasant and exciting place. You may
find it depressing; I am sorry for you,
and you despise me. . . .On the other
hand, I pity you with reason, because
it is pleasanter to be thrilled than to be
depressed, and not merely pleasanter
but better for all one’s activities.”

this could be turned into an objection against the long run argument.
One way of thinking about the law of large numbers is that we have
to do infinitely many experiments (e.g., coin flips) for the average
payoff to converge to the expected utility. Since we don’t actually
have an infinite amount of time, one could say that the use of the
mathematical result shouldn’t be used in this context.

There are, however, many places where mathematical idealiza-
tions don’t map onto the world but are nevertheless good enough
approximations. We need not get bogged down here. The long run
argument needn’t necessarily require that infinitely many experi-
ments are done. It is sufficient to notice that over time the amount of
variation is expected to decrease and there is a tendency to converge
towards the expected utility. If you flip a coin twice, there are four
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possible sequences: HH, HT, TH, and TT. In two of the four we get
50% heads, in one we get 100% heads, and in the last one we get 0%
heads. As we increase the number of flips, there is only one way to
get 100% heads, but the number of ways to get a sequence of around
50% heads increases.8 8 Note this point is not to be confused

with the Gambler’s Fallacy, which we
turn to later.

Perhaps a different way of making the objection is that for many of
our decisions we will only make them once or a few times. Whether
or not to go to war or whom to marry are decisions that happen
infrequently enough that the law of large numbers doesn’t seem to
apply (leaving aside considerations about whether these are instances
of transformative experiences, as discussed above). In fact, some of
our decision making behaviors seem to indicate that when we are
faced with uncertainty in a decision we will only make once, we
prefer not to go the route of maximize expected utility but rather
with an option where we are more certain about the outcome. We’ll
see this point when we talk about risk aversion.

6.3 Two Kinds of Arguments Against MEU

There are two styles of argument against the strategy of maximizing
expected utility. One style of argument against MEU is to show that
its assumptions can be used to generate paradoxes, i.e., conclusions
that are at best unintuitive and at worst contradictory. Conclusions
that are unintuitive are not necessarily surefire objections - one can
always “bite the bullet” and accept that some consequences are quite
surprising. But at the very least one must accept that these are “costs"
of accepting the position. To be clear, these arguments we’re going to
consider target the Maximize Expected Utility principle as a norma-
tive theory. That is, we’ll look at examples where we’re considering
how we think that an ideal agent should reason, and show that MEU
is not consistent with such an ideal agent.

The Maximize Expected Utility principle is sometimes interpreted
as a normative rule. As such, failing to behave in accordance with
it is evidence of non-rationality or even irrationality (assuming the
behavior is within the scope of MEU). MEU can also be interpreted
as a description of how reasoning is done, at least when it’s done
at its best. In this case, if we make sure to set up situations where
decision making hangs only on the variables in question, but agents
fail to make decisions as predicted by MEU, then that is evidence that
MEU is false.

Evaluating MEU from a descriptive standpoint can be a bit tricky
and it’s easy to slide back and forth between the normative and de-
scriptive divide. Here is a helpful example.9 Suppose some engineers 9 Thanks to Trevor Woodward for

bringing this to my attention. You can
find the original case here.

come up with a principle about building bridges. If a bridge col-

https://interestingengineering.com/understanding-hyatt-regency-walkway-collapse
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lapses, it is possible to lay blame on the construction of the bridge,
not on the principle, e.g. perhaps the joints weren’t secured properly
and that’s what caused the collapse. On the other hand, if a bridge is
built with all the appropriate specifications and counts as a good rep-
resentation of a bridge, and yet it still collapses, that can be treated as
evidence that there’s something wrong about the principle governing
bridge building. In the same way, by carefully constructing experi-
ments so that humans are good representations of “rational decision
making”, we can test whether MEU is a good description of it.

So we are also going to look at a few popular examples of how
human reasoning appears to be at odds with MEU from a descriptive
perspective. In order to keep things simple, we’ll work with mone-
tary amounts. As we’ve seen, the utility of money has a diminishing
effect. As long as we keep this caveat in mind, it’s simpler to rep-
resent the examples with money. But rest assured that the actual
experiments will have controlled appropriately for some of these
complications.

6.4 Arguments Against Normative MEU

6.4.1 Allais Paradox

The Allais Paradox is named after its discoverer, Maurice Allais, a
Nobel Prize winning economist. Consider the four following gamble
options in a lottery that has exactly 100 tickets.

Ticket 1 Tickets 2-11 Tickets 12-100

Gamble 1 $1M $1M $1M
Gamble 2 $0 $5M $1M
Gamble 3 $1M $1M $0

Gamble 4 $0 $5M $0

Some decision theorists have suggested that it is perfectly reason-
able to prefer Gamble 1 over Gamble 2. Even though Gamble 2 has
an expected utility of $1.39M, if ticket 1 is drawn you get nothing at
all. Gamble 1, on the other hand, makes winning $1M a sure thing. If
you only get to play this lottery once and you’re averse to taking risk,
Gamble 1 seems the way to go.

In addition, those same decision theorists say it is perfectly rea-
sonable to prefer Gamble 4 over Gamble 3. Gamble 3 has an expected
utility of $0.11M while Gamble 4 has an expected utility of $0.5M.

As a matter of empirical fact, people tend to prefer 1 over 2, and 4

over 3. But even if people didn’t, some argue that an ideal agent with
these preferences is still rational.
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Here’s the problem: There is no utility function that can produce
the result that Gamble 1 ≻ Gamble 2 and Gamble 4 ≻ Gamble 3. We
can actually prove this. To do so, we need to show that the difference
in expected utility between Gamble 1 and Gamble 2 is the same as
the difference between Gamble 3 and 4. If that difference is the same,
then there’s no way that Gamble 1 ≻ Gamble 2 and Gamble 4 ≻
Gamble 3 (although there’s the limiting case where they are equal,
but that would mean indifference, which is not what we’re after).
Note that the probability of drawing ticket 1 is 0.01, the probability
of drawing one of tickets 2-11 is 0.1, and the probability of drawing
one of tickets 12-100 is 0.89. Also, keeping in mind that utility doesn’t
correspond directly to money, let’s say u is a utility function that
takes money as input (like in our discussion of marginal utilities).10 10 One might think that there are some

assumptions that we have to make for
this to work, e.g., u has to be a mono-
tonic function, i.e., we cannot allow that
utilities go down while money goes up.
But as we’ll see momentarily, we don’t
even need this kind of assumption.

If we plug these probabilities into the expected utility equations, we
can calculate the following differences:

Exp(Gamble 1)− Exp(Gamble 2)

= u(1M)− [0.01u(0M) + 0.1u(5M) + 0.89u(1M)]

= 0.11u(1M)− [0.01u(0) + 0.1u(5M)]

Exp(Gamble 3)− Exp(Gamble 4)

= [0.11u(1M) + 0.89u(0)]− [0.9u(0M) + 0.1u(5M)]

= 0.11u(1M)− [0.01u(0) + 0.1u(5M)]

Note that final lines of the equations show that the differences
between Gamble 1 and Gamble 2, and Gamble 3 and 4, are exactly
the same. That means that no matter what utility function you give
for money, there’s simply no way to make Gamble 1 have a higher
expected utility than Gamble 2 and simultaneously have a higher
expected utility for Gamble 4 than Gamble 3.

It’s worth pointing out that the situation we are working in is a
decision under risk. That is, this is a situation where, although we
are uncertain about which outcomes will occur, we can at least assign
probabilities to those outcomes. What the Allais Paradox highlights,
at the very least, is that we tend to be (and, we think ideal agents
should be) averse to risk even when we know what those risks are.

The next paradox will show that our aversion is not only to known
risks, but also to unknown risks.

6.4.2 Ellsberg’s Paradox

The Ellsberg’s Paradox is named after Daniel Ellsberg, who discov-
ered it while being a Ph.D. student in economics at Harvard in the
1950s.
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In this example, let’s suppose that there is an urn filled with 90

balls, numbered 1 through 90. We’ll assume that balls 1-30 are red.
Further, we’ll assume that balls 31-90 are either black or yellow, but
we leave it unknown what the proportion between black and yellow
is. One ball will be blindly drawn from the urn. Given this setup,
consider the following gambles and their payouts given the color of
the ball that will be drawn.

Balls 1-30 Balls 31. . . . . . through 90

Red Black Yellow
Gamble 1 100 0 0

Gamble 2 0 100 0

Gamble 3 100 0 100

Gamble 4 0 100 100

Along the same lines as the Allais paradox, if we’re averse to risk,
it seems reasonable to prefer Gamble 1 over Gamble 2. That’s be-
cause, even though drawing a red ball is not guaranteed (there’s
a 30/90 = 33% chance of drawing red) we at least know what that
risk is, whereas the probability of drawing a black ball is unknown
(except that it’s somewhere between 0/90 and 60/90). It will turn
out, however, even if you believe that there are more black balls than
red balls (which means your odds of picking a black ball is higher
than a red ball), we’ll still get the paradox. For simplicity’s sake, let’s
assume Gamble 1≻Gamble 2.

If we look at Gamble 4 we notice that the chances of winning
$100 is 60/90 because, even though it is unknown what proportion
of black to yellow balls there are, we get $100 whether the ball is
black or yellow (but nothing if it’s red). Gamble 3, on the other hand,
has a 30/90 chance of paying out $100 (when red is draw) plus an
unknown chance of paying out $100 if the ball is yellow. For all you
know, this chance could be 0/90 and upwards of 60/90. Indeed, if
all the balls from 31 through 90 are yellow, then Gamble 3 would
pay out $100 with a 100% chance. But again, you don’t know the
proportion of black to yellow. So, if we consider risk aversion again,
it seems that Gamble 4≻Gamble 3.

The problem is that there is no utility function that can recom-
mend both Gamble 1≻Gamble 2 and Gamble 4≻Gamble 3. We can
demonstrate this by showing that Gamble 2≻Gamble 1 if and only if
Gamble 4≻Gamble 3. To demonstrate this, we calculate the difference
in expected utilities between Gambles 1 and 2, and Gambles 3 and 4.
For simplicity, we’ll use M to represent the utility of $100 and assume
that the utility of $0 is 0. We’ll use B to represent the number of black
balls.



100 bert baumgaertner

Exp(Gamble 1)− Exp(Gamble 2)

= 30/90M − B/90M

= 30M − BM

Exp(Gamble 3)− Exp(Gamble 4)

= 30/90M + (60 − B)/90M − 60/90M

= 30M + (60 − B)M − 60M

= 30M − BM

Notice that the differences in expected utilities in the pairs of gam-
bles are identical. That means there’s no way for Gamble 1≻Gamble
2 and simultaneously Gamble 4≻Gamble 3. Moreover, if we were to
insist that Gamble 2≻Gamble 1, then that will force us to commit to
Gamble 3≻Gamble 4; a situation where we are avoiding known risks
and preferring unknown risks.

The Ellsberg and Allais paradoxes have the same flavor, but they
illustrate a subtle difference. Recall that in addition to decisions
under certainty, we distinguished between two different kinds of
uncertainty: known risk (i.e., decisions under risk) and unknown risk
(i.e., decision under ignorance). The Allais paradox is an illustra-
tion of our preference for options that are certain over options with
known risk. The Ellsberg paradox illustrates that we prefer known
risk to unknown risk. The Maximize Expected Utility principle, how-
ever, does not distinguish between these three kinds of options. It
treats certainty, known risk, and unknown risk as all the same - all
that matters is the expected utility of the option.

What the Ellsberg and Allais paradoxes have in common is that
they invite us to violate a rule known as the Sure Thing Principle,
which we discuss in the next section.

6.4.3 The Sure Thing Principle

Consider again the table from the Allais paradox. Notice that Gam-
bles 1 and 2 have the same outcome for tickets 12-100. Notice also
that Gambles 3 and 4 agree on tickets 12-100.

Ticket 1 Tickets 2-11 Tickets 12-100

Gamble 1 $1M $1M $1M
Gamble 2 $0 $5M $1M
Gamble 3 $1M $1M $0
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Ticket 1 Tickets 2-11 Tickets 12-100

Gamble 4 $0 $5M $0

The Sure Thing Principle says that when you compare two op-
tions, like Gambles 1 and 2, you can ignore the states on which they
agree (in italics) and compare them only on the states in which they
disagree (boldfaced). In this case, the Sure Thing Principle says that
when comparing Gambles 1 and 2, we don’t need to consider tickets
12-100, we can just look at the states of ticket 1 and tickets 2-11. The
same goes for comparing gambles 3 and 4.

If we ignore the last column, as the Sure Thing Principle says we
can, we’ll notice that the comparison between gambles 1 and 2 is
exactly the same as the comparison between gambles 3 and 4. That is,
from the perspective of ticket 1 and tickets 2-11, Gamble 1 is the same
as Gamble 3, and Gamble 2 is the same as Gamble 4.

The Maximize Expected Utility rule entails the Sure Thing Prin-
ciple. That is, any violation of the Sure Thing Principle will also be
a violation of Maximize Expected Utility. Or put differently again, if
you like MEU, then you also should like the Sure Thing Principle. In
the above Allais table, the Sure Thing Principle effectively says that
the comparison between gambles 1 and 2 is the same comparison
as gambles 3 and 4. By these lights, the recommendation by MEU is
correct. That means that our intuition that Gamble 4≻Gamble 3 but
Gamble 1≻Gamble 2 is mistaken. The Allais paradox, according to
this analysis, is starting off on the wrong foot.

A similar analysis of the Ellsberg paradox tells us that our intu-
ition that Gamble 4≻Gamble 3 and Gamble 1≻Gamble 2 must be
mistaken. In this case, the state that the Sure Thing Principle says we
can ignore is when the ball is yellow. By doing so, we see that the
comparison between gambles 1 and 2 is the same as the comparison
between gambles 3 and 4.

Given that our initial intuitions about the gambles are at odds
with the Sure Thing Principle, it is perfectly reasonable to ask which
one we should adopt. Should we trust our intuitions, or should we
trust the Sure Thing Principle? When addressing the Allais Paradox,
Leonard Savage had this to say in favor of the Sure Thing Principle:

if one of the tickets number from 12 through 100 is drawn, it does not
matter, in either situation which gamble I choose. I therefore focus on
the possibility that one of the tickets numbered from 1 through 11 will
be drawn, in which case [the choice between Gamble 1 and Gamble 2

and between Gamble 3 and Gamble 4] are exactly parallel . . . It seem to
be that in reversing my preference between [Gamble 3 and Gamble 4] I
have corrected an error. (Savage 1954: 103)
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Not everyone is convinced, however. In fact, in Savage’s axiomati-
zation of the expected utility principle, the most controversial axiom
is the Sure Thing Principle. At the very least, one thing we can say
is that neither the Allais and Ellsberg paradoxes are knock-down ar-
guments against Maximize Expected Utility. Another thing we can
say is that we’ve uncovered an important assumption about MEU,
namely that if it’s true, the Sure Thing Principle has to be true as
well.

6.4.4 St Petersburg Paradox

Consider the St. Petersburg game. The game starts by flipping a fair
coin. If it lands tails you flip the coin again. When it lands heads
up the game is over. The idea is to play for as long as you can.
There’s a prize worth 2n units of utility, where n is the number of
times the coin was flipped. So, if your first flip was heads, then the
prize would be 2 units of utility. If you flip the coin 4 times where
you get three tails and then a heads, i.e., TTTH, then the prize is
24 = 2 × 2 × 2 × 2 = 16. How much would you be willing to pay to
play the St. Petersburg game?

According to MEU, you should be willing to pay any finite amount
of utility to play the St. Petersburg game. Here’s why. The probabil-
ity of flipping a coin n times, where n is the first time that the coin
lands heads, is ( 1

2 )
n. The payoff for flipping the coin n times is 2n.

The expected utility rule says to weight the utility of each possible
outcome according to its probability, and then sum them up. This
gives us the following sequence of possible series of flips:

H + TH + TTH + · · · =
[

1
2
× 2

]
+

[
1
4
× 4

]
+

[
1
8
× 8

]
+ · · ·

= 1 + 1 + 1 + · · ·
= ∞

In other words, the expected utility of the St. Peterburg game is in-
finitely many utilities. So, we should be willing to pay any amount
that is less than infinitely many utilities. Most people think it is ab-
surd to pay any large finite amount. It’s unlikely that you’re willing
to pay even a few hundred units of utility. The probability of getting
a large sequence of tails before a heads is diminishingly small.

This paradox was discovered by Daniel Bernoulli (1700-1782), a
Swiss mathematician that was working in St. Petersburg at the time.
In response to the paradox, some, like Buffon did in 1745, argue that
some outcomes should be ignored if they are beyond reasonable or
practical concern, if they are “morally impossible”.

There is a closely related idea to Buffon’s suggestion, known as de
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minimis risk. In risk analysis, sufficiently improbable outcomes, like
a comet strike, are ignored because their probabilities are too low to
play a significant role in risk analysis.

If we ignore sufficiently improbable events, then we can block the
St. Peterburg paradox. Say that we only consider outcomes that have
at least a 5% chance of happening (5% is actually still quite high from
a risk analysis perspective, we’re just using this number to illustrate
a point). Then the last outcome you would consider in the sequence
of possible series of coin flips is TTTH, which has a probability of
0.54 = 0.0625 or a 6.25% chance. In other words, you would ignore
all sequences where there are 5 or more flips. That is, you would only
consider the follow sequence:

1
2
× 2 +

1
4
× 4 +

1
8
× 8 +

1
16

× 16

= 1 + 1 + 1 + 1

= 4

There are two related concerns with this solution. One, we haven’t
provided any reason for why 5% should be the minimum proba-
bility that an outcome needs to have to be considered. Any such
line is likely to be ad hoc. Two, and more generally, why would it
be rational to ignore highly improbably outcomes, especially if the
corresponding utilities have large magnitudes?

Another resolution to the paradox is to try to put an upper limit
on the utility scale of the decision maker. It seems reasonable to ac-
cept that utilities are bounded, that utilities for an individual cannot
grow indefinitely. That is, there might be some kind of “hedonic
plateau”.11 To see how this idea can be used to resolve the St. Peter- 11 This phrase is attributed to Trevor

Woodward in the Fall 2020 Decision
Theory class.

burg paradox, suppose that L is the finite upper limit of utility. Then
at some point in the sequence of possible outcomes the amount of
utilities gained no longer grow, even though the probabilities con-
tinue to get smaller:[

1
2
× 2

]
+

[
1
4
× 4

]
+

[
1
8
× 8

]
+ · · ·+

[
1
2k × L

]
+

[
1

2k+1 × L
]
+ · · ·

We can think of the sequence of consisting of two parts. The first part
of the sequence consists of all the utilities before the upper bound L
is reached. Let’s say k is the position where the upper bound L is first
reached. Then the first part of the sequence ends at k − 1. Since we
are taking the sum of products, we can express it succinctly as:12 12 I know, we said we’d keep things not-

so technical. It just takes up so much
page space! If you’re not familiar with
this notation, see this explanation.

k−1

∑
i=1

(1/2)i × 2i

Note that this sum is finite.

https://mathinsight.org/definition/summation_symbol
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The second part of the sequence consists of all the utilities where
the upper bound L is reached. We can express this as:

∞

∑
i=k

(1/2)i × L

Notice that even though this sequence continues indefinitely and is
infinite, each addition later in the sequence becomes smaller than the
previous one, approaching zero in the limit. Hence, this sum will also
be finite.

The result of adding the finite sum from the first part of the se-
quence that’s below the upper bound L and the finite sum of the
second part of the sequence is itself going to be finite. Let’s say that
amount is C. The amount you should be willing to pay to play the
St. Petersburg game is now anything up to the amount C, but no
more. We thereby avoid the paradox.13 13 This solution goes back to the 19th

century mathematician Cramer and
was also endorsed by the Nobel Prize
winner Kenneth Arrow.

If the first resolution to the paradox is ad hoc, where we use the
idea of de minimis risk, then this second resolution where we intro-
duce an upper bound to utilities also seems ad hoc. Moreover, the
paradox can be reformulated without requiring that the sequence of
flips is infinite. It is enough to recreate the paradox just in case the
expected utility of the game is unreasonably high in comparison to
how much we think it is reasonable to pay to play.

There are other angles to approaching the St. Peterburg paradox.
Richard C. Jeffrey, for example, pointed out that whoever is offering
the game is committing themselves to possibly paying the player
an indefinite amount of money. But no one has such an indefinitely
large bank and thereby cannot possibly fulfill such a commitment.
This means that the assumptions of the game cannot be valid.

Note that the success of Jeffrey’s response depends on there being
some limit on what is possible to pay out to a player. If a bank has
access to a Nozick-style experience machine, they might offer payouts
in the form of intensely happy experiences. Here too, however, we
can ask whether there is some natural upper bound on utilities. If
there is, then that would not only support Jeffrey’s solution, but it
would also be a way to address the ‘ad hoc’ objection given to the
second resolution above (where we posited some upper bound L on
utilities).

6.4.5 The Two Envelope Paradox

(Intentionally omitted - this is bonus material.)
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6.5 Arguments Against Descriptive MEU

The Maximize Expected Utility principle is sometimes interpreted
as a normative rule. As such, failing to behave in accordance with
it is evidence of non-rationality or even irrationality (assuming the
behavior is within the scope of MEU). MEU can also be interpreted
as a description of how reasoning is done, at least when it’s done
at its best. In this case, if we make sure to set up situations where
decision making hangs only on the variables in question, but agents
fail to make decisions as predicted by MEU, then that is evidence that
MEU is false.

Evaluating MEU from a descriptive standpoint can be a bit tricky
and it’s easy to slide back and forth between the normative and de-
scriptive divide. Here is a helpful example. Suppose some engineers
come up with a principle about building bridges. If a bridge col-
lapses, it is possible to lay blame on the construction of the bridge,
not on the principle, e.g. perhaps the joints weren’t secured properly
and that’s what caused the collapse. On the other hand, if a bridge is
built with all the appropriate specifications and counts as a good rep-
resentation of a bridge, and yet it still collapses, that can be treated as
evidence that there’s something wrong about the principle governing
bridge building. In the same way, by carefully constructing experi-
ments so that humans are good representations of “rational decision
making’ ’, we can test whether MEU is a good description of it.

In this section we’re going to look at just a few popular examples
of how human reasoning appears to be at odds with MEU. In or-
der to keep things simple, we’ll work with monetary amounts. As
we’ve seen, the utility of money has a diminishing effect. As long as
we keep this caveat in mind, it’s simpler to represent the examples
with money. But rest assured that the actual experiments will have
controlled appropriately for some of these complications.

6.5.1 Risk Aversion

We have seen the topic of risk aversion in the examples of the Allais
and Ellsberg paradoxes. There, it was assumed that an ideal agent
prefers options with less risk over options with more risk, even if
the expected utilities of the options are identical. It turns out that
humans appear to behave the same way.

Consider the following decision matrix that describes payouts for a
fair coin flip.

Heads Tails Expected Utility

Option A $50 $50 $50
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Heads Tails Expected Utility

Option B $0 $100 $50

When given these options, most people will have a preference for
Option A. According to MEU, however, we should be indifferent
between A and B. The reason we should be indifferent is that the
expected utilities for both options is $50.

MEU does not take into account the range of possible outcomes,
except insofar as they contribute to the calculation of the expected
utility. For example, we can increase the expected utility of Option
B by increasing the payout for Tails. But so long as we increase all
the payouts for option A to match the increased expected utility of
B accordingly, the two options will be equally preferred by MEU.
Humans tend not to be indifferent, however.

In fact, up to a certain point, it seems humans prefer a lesser ex-
pectation if it is more certain than a higher expectation that is less
certain. For example, in the table below Gamble 1 has an expecta-
tion of $2,400 for sure, while Gamble 2 has an expectation of $2,409.
While MEU recommends Gamble 2, humans typically prefer Gamble
1.

Tickets 1-33 Tickets 34-99 Ticket 100

Gamble 1 $2,400 $2,400 $2,400

Gamble 2 $2,500 $2,400 $0

To make the case that it really is risk aversion that seems to be
driving the decision making here, as opposed to something about
utility functions, experimenters can inject some risk into the decision
but keep the utilities relatively stable. For example, Gamble 3 is just
like Gamble 1 except now there is uncertainty in the form of known
risk: tickets 34 through 99 do not have a payout. The expected utility
of Gamble 3 is $816. We make the same kind of change to Gamble
2 in order to create Gamble 4, which now has an expected utility of
$825. When Gamble 3 is compared to Gamble 4, now people typically
prefer Gamble 4 over Gamble 3.

Tickets 1-33 Tickets 34-99 Ticket 100

Gamble 1 $2,400 $2,400 $2,400

Gamble 2 $2,500 $2,400 $0

Gamble 3 $2,400 $0 $2,400

Gamble 4 $2,500 $0 $0
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If the table containing Gambles 1-4 seems familiar, it’s because it
has the same structure as the Allais paradox. The main difference
here is that in the case of the Allais paradox we were concerned with
whether an idealized rational agent would have preferences: Gamble
1 ≻ Gamble 2, and Gamble 4 ≻ Gamble 3. Here we are evaluating
MEU as a descriptive theory, so we are comparing what MEU pre-
dicts against what the empirical data says. MEU predicts that both
Gamble 2 ≻ Gamble 1, and Gamble 4 ≻ Gamble 3. According to
a classic experiment done by Kahneman and Tverksy, 82% of par-
ticipants preferred Gamble 1 over Gamble 2, and using the same
experimental participants, 83% preferred Gamble 4 over Gamble 3.
These findings have been reproduced by many researchers all over
the world. This seems to be a clear mark against MEU as a descrip-
tive theory.

6.5.2 Loss Aversion

In addition to being averse to risk, humans tend also be averse to
loss. To illustrate this, we can set up a situation where the only two
options are both risky. However, in one of the options, there’s a possi-
bility of actually losing some utilities. In order to compensate for this
possible loss, the payout for the “winning’ ’ situation is increased by
the same amount. Here’s an example.

Heads Tails Expected Utility

Option A $0 $100 $50

Option B -$10 $110 $50

Notice that the expected utilities of the two options are identical,
so MEU does not have a recommendation (i.e., we should be indiffer-
ent). People, however, tend to prefer Option A over Option B because
in the latter they have to actually pay $10 if the coin lands Heads,
whereas they don’t lose any money if they go with Option A. And
yes, that preference holds even though Option B would have a $10

higher payout than Option A if the coin landed Tails.

6.5.3 Endowment Effect

Suppose half the students in the class are given a mug. Not all the
students that got a mug really need it, and many of the students that
didn’t get a mug could really use one, and lots of students will be
indifferent to mugs. In order to try to sort out the situation, we set up
a little marketplace for people to exchange things. Before the mugs
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go into the marketplace, however, we ask every student what they
think the dollar value of a mug is.

On the “classical view” of MEU, it shouldn’t matter whether
someone was a mug recipient or not when they provide an assess-
ment of a mug’s value. Of course we expect there to be some vari-
ation among students in how much they think a mug is worth. But
what we don’t expect is that there is a systematic pattern in the dollar
amounts they give that reliably partitions the class into those that
received the mugs and those that didn’t.

And yet, that’s exactly what we tend to find. Students who are
given a mug will tend to think that a mug is worth a higher amount
than those who were not given a mug. This is known as the endow-
ment effect. Humans will more highly estimate the value of something
simply because they possess it than if they were not in possession
of it. There’s a good chance that if you’ve bought and sold a car you
may have experienced this already: when you own the car, you are
likely to think its value is higher than if you’re the one trying to buy
the car.

Here’s another way of illustrating the endowment effect. Suppose
Option A is that you get no money and then flip a coin, while Option
B is that you are given $100 and then flip a coin. The payouts for the
options given the coin flips are described in the following table.

Heads Tails Expected Utility

A: Given $0 and flip $0 $100 $50

B: Given $100 and flip -$100 $0 $50

The expected utilities for both options are exactly the same ($50),
and so according to MEU we should be indifferent between A and
B. However, empirical data shows that humans have a preference
for option A. Even though we stand to gain the same amount with
either option, we seem to dislike having to give up something we
are endowed with. In other words, we seem to prefer maintaining
our utilities with the possibility of increasing them over the option to
increase them with the possibility of losing them. In some ways, the
endowment effect combines our aversion to risk and loss.

6.5.4 Prospect Theory

A common theme between risk aversion, loss aversion, and the en-
dowment effect is that they are reference dependent: people’s deci-
sion making seems to depend on a reference point rather than from
some absolute perspective or a “view from nowhere”. That is, when
people make a decision, they take into account information about
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their current situation. If we were to think of these decisions in ab-
solute terms, as MEU assumes that we do, then all that is relevant
is the position we can expect our future selves to be in after the de-
cision. For example, in the endowment effect, both option A and B
have the same future expectation: on average I can expect to be $50

richer. And yet, when I actually do my decision making, I seem to
also consider my past and present situation, in addition to the future.

Prospect Theory was developed by Kahnemann and Tversky14 to 14 (CITE 1979 Prospect Theory)

explain these and other related effects of human decision making.
The main idea is that decision making happens in two stages. In the
first stage, there is a process called editing. Here, the outcomes of a
decision are ordered using some heuristics (“rules of thumb’ ’). For
example, one heuristic to decide how dangerous or risky an action
might be is to assess how easy it is to think of examples of where
that action goes wrong. An example that is commonly brought up is
comparing the dangers of air travel vs automobile travel. Airplane
crashes are typically horrific and brought up in the news, making it
easy for us to recall such examples. But car accidents are typically
not headline worthy, even if they are more prevalent. That’s the idea
behind salience: by any statistical measure, the option to drive across
the United States is more dangerous than the option to fly across
it, and yet many people at least feel like flying is more dangerous
because it is easier to recall the negative outcomes of flying. Kahne-
mann and Tversky, along with many researchers since, have explored
many of the systematic ways humans tend to rely on heuristics, as
well as biases, to help simplify decision making.

The second stage of human decision making, according to Prospect
Theory, is called the evaluation phase. Here people combine informa-
tion about the probabilities of outcomes with the value or utility of
those outcomes - much like we’ve described in calculating expected
utilities. However, unlike standard expected utility theory, the ex-
pected utility function in Prospect Theory passes through a reference
point. In a similar way that money has a diminishing marginal utility,
so does the Prospect utility function, except when losses are being
considered, the S-shaped function is asymmetrical. That is, losses will
have lower absolute values of utility than their gains counterpart. For
example, gaining $0.05 might have utility 17, but losing $0.05 would
have a utility of -40.

To what extent is Prospect Theory an alternative to Maximize
Expected Utility? It depends in part how we characterize the relation-
ship between the theories. Here is an optimistic characterization.

Notice that in the second stage, the evaluation phase, Prospect
Theory claims that decisions makers run the outcomes through a
process where they weight the probability of the outcome with the
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utility assigned to the outcome. That is exactly what MEU also does.
If we are minimalistic about the commitments of MEU, we could say
that MEU is not committed to how utilities are assigned and whether
they go through a reference point or not. That is, one could reason-
ably argue that the main thrust of MEU is that we compare options
by taking the sum of the weighted probabilities (or equivalently, the
weighted utilities) of their outcomes.

In other words, if maximize expected utility makes no commit-
ments about the nature of the utility function, but Prospect Theory
does, then Prospect Theory is a refinement of MEU.

Not everyone will agree with this characterization of the relation-
ship between MEU and Prospect Theory. But at the very least we can
say that there is a way for MEU to salvage itself as a descriptive the-
ory, at least for the observations we’ve concern ourselves with so far.
The next result, however, is difficult for MEU to salvage itself from.

6.5.5 Weighting Effects and Why They Matter

Consider the following prospects.

• Prospect 1: $6,000 with 45%

• Prospect 2: $3,000 with 90%

• Prospect 3: $6,000 with 0.1%

• Prospect 4: $3,000 with 0.2%

In a classic experiment of 66 participants, 86% said they preferred
Prospect 2 over Prospect 1, whereas 73% preferred Prospect 3 over
Prospect 4. From the perspective of MEU, this is puzzling because
Prospects 1 and 2 have the same expected utility, as do Prospects 3

and 4. Moreover, the relationship between 1 and 2 is that Prospect
2 has twice the chance of getting half the amount in Prospect 1, and
that is also true of how 4 relates to 3. So at the very least we would
expect that if people prefer Prospect 2 over 1, then for the same rea-
son theoretical considerations would lead us to predict a preference
for 4 over 3. And yet, that’s not what we find empirically.

What explains why people prefer 2 over 1, but 3 over 4? The most
agreed upon hypothesis is that we are typically poor at reasoning
with low probabilities. While it is relatively straightforward to per-
ceive that 90% is twice as much as 45%, the percentages of Prospects
3 and 4 are so low that we don’t pay much attention to their relative
sizes. Sure, we might think, strictly speaking 0.2% is twice as high
as 0.1%, but both are so low in terms of chances of winning that we
treat them as being similar enough. Contrast that with the compari-
son of $6,000 and $3,000, where it is very easy to appreciate that one
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is twice the amount as the other. In brief, our inability to distinguish
or appreciate differences in small probabilities is thought to explain
what goes wrong here.

Prospect Theory takes seriously this feature of human reasoning.
On the one hand, people typically underestimate moderate and large
probabilities, but overestimate small probabilities. To incorporate
this in a theory of decision making, Prospect Theory adds a weight-
ing function to the probability function. That is, whereas MEU takes
probabilities at their face value, the weighting function will manipu-
late lower probabilities to make them seem higher than they are, and
make moderate and high probabilities seem lower than they are.

In our characterization of the relationship between MEU and
Prospect Theory, we said that MEU might not be committed to a
particular utility function. That is, there doesn’t seem to be anything
inconsistent with letting MEU be open to the kind of asymmetric
function that Prospect Theory proposes. The same cannot be said
when it comes to probabilities. Here Prospect Theory seems to be
making adjustments that are at the very least in tension with the
spirit of MEU. The tension can be seen by asking ourselves, are hu-
mans making a mistake when they are reasoning with probabilities?

We have to be very careful here about how we think of the word
‘mistake’. It is not intended to signal a normative-descriptive divide.
Our bridge building example will be helpful here. When a bridge
collapses, we can try to figure out what the cause was. Was there
a mistake in the design of the bridge, in which case the cause of
the collapse was in the engineering (the theory)? Or was there a
mistake in the construction of the bridge, in which case the cause of
the collapse was in the application of the design or poor materials
(the experiments or observations).

Prospect theory says that the cause of the collapse was in the en-
gineering. What humans do is systematic and should be taken as an
expression of rationality. We need to therefore update our theory of
rational decision making in order to make it account for humans.
MEU, on the other hand, says that the cause of the collapse was in
the application. When humans are tired or drunk, for example, they
don’t always choose the same options as they would when they are
clear and sober. There are lots of instances where people are ara-
tional or irrational. MEU sees weighting effects as an example of not
expressing rationality.

In short, Prospect Theory says to take the experiments seriously
and update the theory. MEU says to take the theory seriously and
recognize that the experiments are done when humans are not at
their best, or even approximations of it. What should we decide?

Let us take a step back and consider what we want out of a the-
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ory of decision making. There are at least two things we might care
about. On the one hand, we might care about making predictions
about how humans make decisions. On the other hand, we might
care about having a theory that we can use as a guide to making
decisions.

With respect to making predictions, it seems that Prospect Theory
is superior to its ancestor, MEU. In fact, Prospect Theory has done
so well that it has spawned an entire cottage industry of researchers
that study heuristics (or “rules of thumb”) in decision making. In
turn, these heuristics can be used to nudge people in their decisions.
Sometimes this is for the better, sometimes for the worse. Here is
an example of the better, assuming that being an organ donor is a
good thing from society’s perspective. The driver’s license office
can offer you the same choice (to be an organ donor or not) in two
different ways: you opt in to be a donor, or you opt out of being a
donor. Notice that you are just as free to make the choice either way,
but there is a certain amount of “work” you have to do for one of the
options, and which option that is differs in the two contexts. In the
context where the organ donor option is the default and people can
opt out, more people are likely to be an organ donor than if they had
to do the work of “opting in” to be one.

As you can imagine, however, once it can be predicted how people
make decisions, this can also be used in ways that will not necessarily
benefit us. Advertising is the primary example of how our decisions
are influenced by interests that may not be in line with our own.

Maybe the engineers are right though, and what we need to do is
become better bridge builders. To that end, Prospect Theory is not
necessarily a theory that we want, if what we want is a theory that
helps guide our decision making in a way that improves our chances
of fulfilling our interests or preferences. As we said in earlier chap-
ters, MEU is silent on what those preferences should be. But it is not
silent on how we should reason with probabilities. Prospect Theory
adds extra machinery in order to make a theory of decision mak-
ing that fits with systematic observations of humans. MEU thinks
that humans are better than that. And where they are not, there are
opportunities for us to train ourselves to become better.

In other words, Prospect Theory, in its capacity to capture human
decision making, can be used to both improve our choices, but can
also introduce maladies. Maximize expected utility theory, by con-
trast, can be seen as a way to help us remedy those maladies. The
place to start is with training ourselves to think about probabilities
correctly. We will learn some of the basics of probability theory soon.
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6.6 Summary

The goal of this chapter was to answer three questions. First, what
is the scope of MEU? Here we answered that MEU is a theory of
what we called standard decision making. We looked at clear cases of
standard decision making, clear cases outside of it, and an example
(choosing to have a child) that can be described as being in between,
which we called an instance on non-standard decision making. These
considerations help us understand what sorts of examples of decision
making we should be thinking of when we say that MEU is a theory
of it.

The second question was about reasons in favor of MEU given its
scope. Here we considered a “long run” argument, which says that
MEU is a good theory of standard decision making because in the
long run MEU will provide higher payoffs than the alternatives, just
as we would expect that good standard decision making will produce
higher payoffs in the long run.

The third question was about arguments against MEU. We divided
these in to two. The first set of objections are theoretical in that they
attempt to demonstrate that the internal workings of MEU are not
coherent. These objections apply directly to normative versions of
the theory, and perhaps to some extent descriptive versions of MEU
as well. The second set of objections came from empirical considera-
tions. These objections were primarily focused on MEU as a descrip-
tive theory, but they can also be turned into arguments against the
normative version of it as well under careful characterizations.

6.7 Exercises

1. Suppose, contra L.A. Paul, that we could set up the decision to
have a child as a standard decision (pretend like the experience is
not transformative). Using the four relevant grous (Luck Parents,
etc.) to build a decision table. What utilities would you assign to
each outcome? What probabilities do you think these get? And
what are the expected utilities for the two choices?

2. In the movie The Matrix Neo must choose between the red pill
and the blue pill. Is Neo’s choice an instance of standard deci-
sion making, or is it more like L.A. Paul’s idea of a transformative
experience? Explain. (If you haven’t seen the movie, think of an-
other example that might count as a transformative experience and
present some reasons for thinking why it is one and why it might
not be one.)

3. Which objection against normative MEU do you find most com-
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pelling? Does the long run argument have a response to that objec-
tion?

4. Which objection against descriptive MEU do you find most com-
pelling? To what extent are you convinced (or not) that Prospect
Theory can salvage MEU? Or is Prospect Theory too different that
you think we should consider it to be a different theory?



7
Intervention

We have emphasized the importance of distinguishing between that
which is in our control and that which is not. After all, it seems to
be a constitutive feature of making a decision among a number of
choices. If we can’t control something, it hardly seems correct to
think that we have a choice in the matter.

Another way of thinking about what is and isn’t in our control
is in terms of intervening on the world. That is, when we make a
decision by selecting an action, we are intervening on the world
by having a causal effect on it. When I choose to study, a different
set of worldly facts come about than if I choose to party: if I study,
my brain will have some information accessible to it that it would
not have if I had partied (not to mention the lack of consequences
from partying). If I go to the park to play frisbe with my friends, a
different set of events will unfold than if I had chosen to stay home to
work on a project. If I pick the one box in the Newcomb problem that
will bring about a different result than if I had picked the two box
option.

We have to be careful about how we think about intervention in
our decision tables. It can be tempting to think that by intervening
we are shaping the world to our will, but that’s not quite right, or at
least not that simple. A better way is to imagine that the world is like
an agent that has already selected which column in a table is true,
but we are uncertain about what the world has selected. The action
that we then select intervenes by narrowing down the set of possible
outcomes by selecting a particular row. The world then “reveals”
what it had already selected just before we made our choice, and the
outcome then becomes known to us.

There have been some recent developments in modeling the idea
of interventions. These include the idea of a causal model.1 This 1 Judea Pearl’s book Causality had a

big impact on thinking about causal
models. Another more recent book of
his is The Book of Why.

chapter will introduce the idea of causal models and their represen-
tations as causal graphs (or networks). After introducing the basic
ideas behind causal models, we’ll use them to illustrate that there
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are different kinds of decisions theories. All of these make use of ex-
pected utility, but they differ in their interpretations of how choices
intervene.

7.1 Causal Models

To start, let’s temporarily assume that the world is perfectly deter-
ministic and that every single cause has a single effect, and every
single effect has a single cause. For example, suppose we have the
very simple example that you studying for a test guarantees that
you pass it, and that passing the test will cause you to win a prize.
Here we are implicitly suggesting that if you don’t study then you
won’t pass, and that if you don’t pass you won’t get a prize. The way
we represent this example is by having a variable for each cause or
effect, and each variable can have a set of values. For example, our
first variable would be BEHAVIOR and it has two possible values,
study or party. Our second variable would be TEST and have values
of pass or fail. Our third would be PRIZE with values yes or no. We
can then use arrows between these variables to represent their causal
connection:

BEHAVIOR TEST PRIZE
Figure 7.1: Simple causal pathway

Given our assumptions, there is just one way for you to get the
prize. You getting the prize depends on you passing the test, and
you passing the test depends on you studying. We can express these
dependencies using some very simple equations. Let’s use ‘1’ to
represent cases of studying, passing, and winning the prize, and
we’ll use ‘0’ to represent partying, failing, and not getting a prize. In
addition, we’ll read ‘X:=Y’ as ‘the value of X depends on the value
of Y’.2 The following single equation then represents that the PRIZE 2 Note the direction of dependency,

which only goes the one way. Think
of ‘:=’ as a single symbol, like going
backwards along the arrow on the
diagrams.

variable depends on the TEST variable:

PRIZE := TEST

and similarily the TEST variable depends on the BEHAVIOR variable:

TEST := BEHAVIOR

Given these equations, we can imagine there are three ways to ensure
that PRIZE = 1.3 The first, as if by the power of God, is to simply 3 Heads up: the first two are weirder

than the third.just make PRIZE = 1. This is a bit awkward, for effectively we are
‘’screening off” all the upstream causes in the graph as if they didn’t
really matter after all. The second, which is less arbitrary (given our
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other assumptions), is to make TEST = 1. By the equation PRIZE :=
TEST this makes PRIZE = 1. But this is still not the way that we’re
thinking about our example, particularly give the way we have drawn
our simple graph. The only way to make PRIZE = 1 given what is in
our control is to set BEHAVIOR to be 1. This in turn makes TEST =
1 given that TEST := BEHAVIOR and then PRIZE = 1 given that
PRIZE := TEST. In the causal modeling literature, all three of these
possibilities we’ve covered would count as a kind of “intervention”,
but what they have in mind is an intervention on the model. What
we mean here by ‘intervention’ is being in control of a variable by
being able to set its value.

There is, nevertheless, a sense in which getting the prize is in your
control, even if you can’t directly intervene on that variable. When
we set BEHAVIOR to 1, that fact, combined with the causal graph,
will have guaranteed downstream consequences that ultimately make
PRIZE equal to 1.

The simple scenario we have been working with might remind
you of decisions made under certainty. Our primary interest, how-
ever, has been dealing with decisions where there is some amount of
uncertainty, i.e. where there are some things that are outside of our
control that combine with our decision to generate an outcome. For
example, suppose you are playing a game where your friend is going
to flip a fair coin and you can choose to either bet or not bet while it
is in the air. If you bet and the coin lands heads, you win a dollar. If
you bet and the coin lands tails, you lose a dollar. And if you choose
not to bet at all then you don’t win or lose anything. In our standard
matrix representation, this scenario looks like this.

Heads Tails

Bet Heads $1 -$1

Don’t Bet $0 $0

We can use our graphs to also represent this situation. We’ll have
three nodes, one for the possible actions (bet / don’t bet), one for
the possible world states (heads / tails), and one for the possible
outcomes (the four cells in our table).

In addition to this graph, we can write down the equation that
will determine how much money you would receive as the outcome.
As the graph suggests, this depends on both your action and the
world, though you only have control over the former. We’ll use ‘1’ to
represent that you bet and ‘0’ that you don’t, and ‘1’ to represent that
the coin turned up heads and ‘-1’ that it did not. The equation is:

OUTCOME := ACTION × WORLD
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OUTCOME

ACTIONWORLD
Figure 7.2: General Causal Pathway for
Decisions. The WORLD bubble is like
all the columns in our decision tables,
the ACTION bubble is like all the rows,
and the OUTCOME bubble is like all
the cells of a table.

Inserting the relevant combinations of values for the actions and
world states will output the corresponding values in the outcomes.4 4 Exercise: What do those values need

to be?We now have three kinds of representations we can make use of.5
5 That is, tables, graphs, and some
equations.The graph representation will be particularly helpful for illustrating

some important points.6 In general, a causal graph is a collection 6 Don’t be fooled by the simplicity of
the diagrams. They represent a lot of
information.

of nodes with arrows between them. An arrow represents that a
node (a variable) has a direct influence on another node (the one that
the arrow is pointing to). The node where the arrow starts is called
the parent node, and the arrow where the arrow points is the child
node. When there is a chain of arrows, a node can have ‘upstream’
ancestors (parents, parents of parents, parents of parents of parents,
etc.), as well as ‘downstream’ descendants. Since the arrows are rep-
resenting causation, and causation only flows in one direction, the
collection of arrows cannot have cycles, i.e. it is never the case that a
node can be connected back to itself by following a chain of upstream
arrows (nor similarly downstream ones).

7.2 Common Causes

An important concept that causal graphs help us illustrate is the
idea of a common cause. Let’s suppose that you occassionally suffer
from severe headaches. A pretty good indicator of whether you will
get one later in the day is if you have “spots” in your vision in the
morning. You also notice that on days when you eat a banana in the
morning you tend not to get a headache later in the day. Let’s use
H = 1 to represent that you get a headache, H = 0 that you don’t,
V = 1 that you have spots in your vision, V = 0 that you don’t, and
A = 1 that you ate a banana in the morning and A = 0 that you
didn’t. The causal graph would look like this.

The equation for the value of the headache variable would be:

H := V × (1 − A)

It is helpful to see the four relevant possibilities in the form of a table.
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H

AV
Figure 7.3: Getting a headache can
depend on having spots in your vision
or whether you ate a banana.

V A H := V × (1 − A)

1 1 0

1 0 1

0 1 0

0 0 0

When we do some reasoning with these representations, we’ll
notice that the only time you get a headache is when you have spotty
vision but choose not to eat a banana.

Now lets add in an additional consideration. Suppose that you
go to the doctor and they note that you are prone to a potassium
deficiency. A potassium deficiency, they tell you, can often lead to
spots in vision, as well as cravings for bananas (because they are
high in potassium!). Suddenly you realize that the days that you
had headaches were days when you had both spotty vision in the
morning and also had cravings for a banana - but for one reason or
another you decided not to eat one. Equipped with this new knowl-
edge, you now make sure you always have bananas on hand so that
you can choose to eat one when you have a craving.

Let’s update our causal graph. You’ll notice that a potassium defi-
ciency has two effects, one on spotty vision and one on your choice to
eat a banana. Let’s say D = 1 means you have a potassium deficiency
and D = 0 means you don’t.

H

AV

D
Figure 7.4: A common cause pathway.
A deficiency of potassium causes both
spots in vision and a desire to eat
bananas.

This more complicated causal graph can no longer be represented
by a single equation. Rather, we now need a system of equations that
when taken together represent the graph.7 7 In the literature each line is called a

structural equation, and the collection
of them is the system of structural
equations.
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V := D

A := D

H := V × (1 − A)

If we now consider the possibilities, we’ll notice that you never
get a headache. This is because on the days that you would get a
headache from spotty vision are days when you have a potassium
deficiency, but a potassium deficiency also means that you will eat
a banana, and thereby counteract the headache. In our example,
spotty vision and eating bananas have a common cause, namely a
potassium deficiency.8 8 Try out this reasoning on the system

of equations: set D = 0 and find the
value of H, then do it again when you
set D = 1. What do you notice about
the value of H in each case?

Causal graphs make it really easy to spot when two or more vari-
ables have a common cause. We simply take those nodes and trace
the upstream arrows: if the variables all have a common ancestor,
then they have a common cause (the variable that is the common
ancestor).

When two or more variables have a common cause, those variables
will be highly correlated with each other, even though they are not
causes of one another. For example, an increase in ice cream sales
can be correlated with an increase in pool drownings. We should not
think, however, that ice cream sales cause pool drownings (nor for
that matter, that pool drownings cause more ice cream sales!). Rather,
an increase in ice cream sales and pool drownings have a common
cause: an increase in temperature, which tends to cause people to
both buy more ice cream and to go swimming (which in some cases
unfortunately leads to some people drowning).9 9 Careful here. If X is a common cause

of Y and Z, then Y and Z will be
correlated. But just because U and W
are correlated does not mean they have
a common cause - some correlations
are spurious. See these examples of
spurious correlations.

Similarly in our case: your spotty vision does not cause you to
choose to eat bananas, nor does eating bananas cause your spotty
vision. Rather, it is a potassium deficiency that causes both.

7.3 Application to Newcomb-like Problems

Causal models help us gain insight into some of the decision prob-
lems we’ve seen. Recall Newcomb’s problem, where a game show
host consulted an AI that has profiled you to determine whether
to put a million dollars into a second box or not. The payoff table
looked like this:

AI predicts two box AI predicts one box

One box (just A) $0 $1,000,000

Two box (A and B) $1,000 $1,001,000

What this table hides are causal assumptions about the outcomes.

https://www.tylervigen.com/spurious-correlations
https://www.tylervigen.com/spurious-correlations
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We have been insisting that when we set up decision matrices that
the rows are the choices or actions available to us that are in our
control, and the columns are the world states - the things that we are
uncertain about and are out of our control. Using our simple causal
pathway diagram to illustrate this, we might think that the following
represents the above table:

OUTCOME

BOX PICKAI PREDICTION
Figure 7.5: Misleading representation of
Newcomb problem

But given the narrative of the scenario, there is a correlation be-
tween what the AI predicts and what people choose to do. The rea-
son for this correlation is not an accident - after all it is stipulated
that the predictions of the AI are highly reliable (even if it’s not per-
fect). When the AI makes a prediction on what someone will choose,
it is consulting some body of information that we reasonably could
put under the umbrella of a person’s character. That is, a person’s
character is a guide to what action they are likely to select (their box
pick: one or two) as well as what the AI will predict (which leads to
world state: $1M in box A or not). So a better respresenation of this
situation would be the following causal graph:

OUTCOME

BOX PICKAI PREDICTION

CHARACTER
Figure 7.6: Newcomb pathway

This representation makes it clear that there is a common cause to
the AI’s prediction and your action. If that’s right, then the setup is
actually not a legitimate kind of decision making problem, since we
are not maintaining that the world states and actions be independent
of one another. It is not obvious, however, how we might go about
fixing this and numerous proposals exist, some of which we’ll cover
in due course.

First, let’s see how some other examples we’ve discussed are like
the Newcomb problem. Consider again the situation where you are
deciding whether to work on a project from home or to show up to
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the park to play a game of frisbee with your friends. In that decision
problem, the uncertainty involved whether “Annoying Guy” would
also show up. Here was the utility table we had.

Annoying guy stays home Annoying guy shows up

You stay home 2 0

You show up 3 1

We additionally suggested that, while you might not like it, you
and Annoying Guy are very much alike. In fact, let’s just suppose
that you and Annoying Guy are identical twins. What this means for
this example is that what you choose to do is correlated with what
Annoying Guy does. We can again use a causal graph to model this
situation. When we do, we need to decide whether the correlation
between your choice and Annoying Guy’s is completely accidental, or
whether there is a reason for that correlation. We have suggested that
it’s the latter. If we unpack this, it would be again reasonable to think
that the correlation reflects a common cause between the two of you:
you have similar characters.10 So we might have this kind of causal 10 And given that we said you are

identical twins, the common character
could be the effect of having a common
physiology, but we leave that out for
now.

graph:

OUTCOME

YOUR ACTTWINS ACT

CHARACTER
Figure 7.7: The Twin Example

Think about another example we’ve discussed about whether to
study for a test or to party. Here too it might be tempting to set up a
graph that looks like this.

OUTCOME

CHOICEDIFFICULTY
Figure 7.8: Test Example - Incorrect
decision model setup because world
states and acts are supposed to be
independent, but they are not (CHOICE
is a common cause).

But that graph is incorrect. We insisted that we had to be careful to



decision theory 123

understand that what it means for a test to be difficult is independent
of the action to study - “difficult” had to be some kind of measure
by which an instructor uses to design questions. This is because your
studying for the test can affect the perceived difficulty of it, and that
would violate our requirement that the world states be indepen-
dent of the actions. A causal graph makes it clear why we have to be
careful: if we’re not, then your choice (study or party) would be the
common cause of the outcome!

If world states and our choices are independent prior to the out-
come, as we are trying to be careful to do, then we should have this:

OUTCOME

CHOICEDIFFICULTY
Figure 7.9: Test Example - Correct
decision model setup if we insist that
world states and acts are supposed to
be independent.

What we might notice is that the Newcomb problem is more like
the incorrect test example if we take into account something like
a person’s character. Newcomb-like problems all seem to have a
kind of causal structure where, if we go back far enough, there are
common causes that influence both the world state and our action.
That is, if we were to map out causal graphs in more detail, they are
likely to end up looking something like the following.

OUTCOME

BEHAVIOR

CHARACTER

PHYSIOLOGY

WORLD

. . .

. . .

Figure 7.10: More realistic causal
graphs of decisions. The idea to rep-
resent things in this way come from
Kenny Easwaran’s ’A classification
of Newcomb problems and decision
theories’ in *Synthese* (2021, 198).

What are we to make of these kinds of situations? Isn’t it true
that our choices can impact several different variables in this chain?
Regularly choosing to exercise can impact our physiology - that’s
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the whole point behind training! And in the banana example it can
ensure that we don’t get a potassium deficiency, and if we do we
still can prevent our headaches. And isn’t it the case that the way we
develop our character is by regularly making the kind of choices that
correspond to the kind of person we want to be? In the Newcomb
problem, we want to be the kind of person that picks the one box,
since that’s the kind of information the AI would use to make its
prediction, which in turn makes it highly likely that there will be a
$1M in the box! Do these kinds of considerations mean the world
state is in a person’s control after all?

We have been using the idea of control in a binary (on/off) kind of
way, but as the causal graph above suggests, what is and isn’t in our
control might not be such a clear thing. Perhaps a better way to think
of control is that it comes in degrees. Towards the left side of the
causal graph are things we have less control over, like our physiology,
and towards the right are things that we have more control over, like
our behavior in a particular moment.

Whether control is binary or comes in degrees, what we are draw-
ing attention to is a question about where the locus of a choice is.
We will see shortly that how one answers this question will largely
determine the type of decision theory one ends up endorsing.

7.4 The Locus of Choice and Types of Decision Theories

It is reasonable to suggest that rationality has a kind of unity. We
started our analysis of decision making by defining instrumental
rationality - an action is more or less rational depending on how
well it helps achieve some goal or aim. Similarly, there is a principle
that connects what is possible for us to do and what we ought to
do: if something is not in our control to do, then it’s false to say
that we have an obligation to do it. One way to wrap up some of
these considerations is with a kind of “enkrasia” principle along the
following lines:

(Unity of Rationality) It is rational to do X if and only if: i) it is
rational to plan to do X, and ii) it is rational to have character traits
that lead to planning to do X, and iii) it is rational to have the kind of
physiology that allows for the development of such character traits,
and so on.

If the unity of rationality is true and we are trying to maximize
expected utility, then for Newcomb-like problems we should be se-
lecting the analogs of the one-box option. For if we did not, then
selecting the two-box option in the moment is a reflection of our
broader character, which means the AI would have made that predic-
tion, and so we would be missing out on $1M (and consistently so if
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we went on the game show multiple times).
The dominance argument suggests, however, that the rational

thing to do is to pick the two-box option. How can this be rational if
that effectively guarantees that one will be consistently missing out
on $1M? There are at least two things to say here. First, one might
suggest that the world is imperfect and sometimes it rewards what
is irrational. Just because the world rewards the irrational does not
detract from the rationality of the choice.11 11 David Lewis has made this sort

of response in his ‘Causal Decision
Theory’ in 1981.

The second thing one could say is that rationality might not have
the sort of unity that is suggested above. That is, perhaps in some
situations it is possible that the rationality of doing X is at odds with
the rationality of planning to do X, or is at odds with the rationality
of having the relevant character traits. That is, if we deny the unity
of rationality, one might say that it is perfectly consistent to develop
a character that corresponds to being a one-box kind of person, but
then in the moment on the game show where one makes the choice,
one chooses to two-box at the very last minute. The dominance ar-
gument seems to be suggesting something along these lines if the
outcome of winning $1M + $1,000 is a live possibility at all.

A related difficulty concerns about our knowledge of what is and
is not in our control, as well as our knowledge about the kind of char-
acter or physiology we have. In fact, it’s not unreasonable to think
in some cases our brains are planning to do something what we
aren’t consciously aware of (yet), and so in a sense we might not have
knowledge of our own plans. How might that affect our considera-
tions about the unity of rationality? Let’s illustrate with an example.

There is a parasite called toxoplasma gondii that is primarily hosted
by cats but affects mammals in general. Infected individuals tend not
to show symptoms, but there do exist a wide range of negative ef-
fects. Interestingly, infected rats will tend to be less afraid of cats and
even be attracted to cat urine, which from the parasite’s perspective
is advantageous because that’s how it perpetuates its life-cycle (the
larvae develop in rats and then mature in cats, laying more eggs in
the excrement of cats which are then picked up by rats).

Consider then an agent that knows it’s possible they have toxo-
plasmosis. Given this possibility, they know that there is some chance
that they will experience negative effects from it, but they also know
that they are more inclined to adore cats by, e.g., speaking to them,
collecting pictures of them, and potentially even petting them. That
is, they consider the following causal graph.

Let’s assume that while the chances of negative side effects are
small, the negative utilities of those side effects are very large, whereas
the utilities that come with adoring cats is relatively small in compar-
ison. Should the agent decide to adore cats or not?
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Toxoplasmosis

Adore catNegative effect

Figure 7.11: Toxoplasmosis problem

If the agent uses the causal graph as is, they might reason that
choosing to adore cats is itself evidence of having toxoplasmosis,
which in turn makes it more likely that they will have negative ef-
fects. Note that their choice does not cause the negative effects. Rather,
when they consider the action of adoring cats, they in turn use that
as new information about themselves! And that in turn might influ-
ence what they end up deciding to do. We don’t yet have the machin-
ery from probability theory to make this more precise, but know that
so long as the negative utilities are sufficiently larger than the posi-
tive utilities, and the probabilities for negative effects aren’t too small,
the agent will choose not to adore cats.

Alternatively, the agent might follow our insistence that there
be no common causes between the world states and our relevant
choices. So to the extent that they have a choice in adoring cats or
not, this will be independent of the already settled fact of whether
they have toxoplasmosis or not. To represent this, they modify the
causal graph so that they severe the dependence arrow from toxo-
plasmosis to adoring cats:

Toxoplasmosis

Adore catNegative effect

Figure 7.12: Toxoplasmosis problem -
intervened.

In this way of reasoning, the agent recognizes that adoring cats is
evidence that they have toxoplasmosis, but this is already accounted
for in the other two nodes and the connection between them. In this
reasoning, toxoplosmosis does not cause the choice of adoring cats.
So now when they reason about what to do, they recognize that
adoring cats always adds some small extra utility (say 1), regardless
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of whether the world state is that they have toxoplasmosis or not
(where toxoplasmosis has a negative utility of 1000, say).

Has toxoplasmosis Does not

Ignore cats -1000 0

Adore cats -1000 + 1 0 + 1

From this perspective, the agent reasons that they should adore
cats, since that’s the dominant option.

What we are illustrating with this last example is a question about
whether choices, wherever they are located in the causal graphs, can
be informative about the very causal graphs we are using to guide
our choices.

So we have two kinds of questions. One kind of question is about

where the locus of choice is. The other kind of question is
about

whether interventions related to choices are further

evidence to be used in our reasoning. It turns out that how we
answer these questions will characterize different kinds of decision
theories.

The most common decision theory, called

causal decision theory (CDT), puts the locus of choice furthest
to the right of the causal graph we had above, i.e., a choice for the
purpose of standard decision making is what decides the behavior.
Variables that are upstream, such as character and physiology, are
not part of what is being analyzed, at least not for the purpose of
understanding rationality in terms of comparison of options.

On the other extreme of the causal graph, and a more recent addi-
tion to the literature, is

functional decision theory (earlier known as timeless decision
theory). On this decision theory options are compared by consider-
ing the furthest upstream points of evaluation. So if that happens to
be character, for example, then options are compared by imagining
the impacts of interventions (the removal of causal arrows) at those
points. In some presentations of FDT, we imagine that we are choos-
ing what kind of robot or set of functions we do best in a decision
problem.

A third kind is
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evidential decision theory (EDT). The idea behind EDT is that
we don’t intervene on a causal graph at all when we analyze what to
do. Rather, just like in the toxoplasmosis example, we simply condi-
tionalize on the evidence that is captured on the graph. This notion
of conditionalization has a technical meaning that is addressed in
probability theory. So it is finally time for us to get clear on what we
mean when we talk about probabilities.

Exercises

1. Consider the following system of structured equations:

O := W × A

A := P

W := C

P := C

Draw the corresponding causal graph.

2. Here is an example to consider from Derek Parfit (1984): Suppose
that I am driving at midnight through some desert. My car breaks
down. You are a stranger and the only other driver near. I manage
to stop you, and I offer you a great reward if you rescue me. I
cannot reward you now, but I promise to do so when we reach
my home. Suppose next that I am transparent, unable to deceive
others. I cannot lie convincingly. Either a blush, or my tone of
voice, always gives me away. I want to get the major benefit of a
ride out of the desert, but actually giving you the reward is a cost
to me. So ideally, I would like to be able to formulate a sincere
plan to give you the reward, a plan that is sufficiently sincere that
you come to believe me and give me a ride out of the desert, but
after having gotten the ride I’d rather not follow through on this
plan.

• Using the causal graph model representation, analyze this deci-
sion (note that planning happens somewhere between CHAR-
ACTER and BEHAVIOR). You may find it helpful to also in-
clude the decision table like we have been doing.

3. Here is an example from Egan (2007): Paul is debating whether
to press the “kill all psychopaths” button. It would, he thinks,
be much better to line in a world with no psychopaths. Unfortu-
nately, Paul is quite confident that only a psychopath would press
such a button. Paul very strongly prefers living in a world with
psychopaths to dying.
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• Represent Paul’s decision problem in a standard decision ma-
trix. Then draw a causal graph diagram for it. Is there a com-
mon cause here? This is sometimes presented as a problem for
causal decision theory. Explain how that could be.

4. In our discussion of the unity of rationality, we considered the
possibility that an action is rational even though “the world”
would reward the irrational action (at least according to dom-
inance reasoning). Can you think of any examples besides our
discussion of the Newcomb Problem or the Toxoplasmosis Prob-
lem? What argument would support the claim that the example
action is rational despite the world rewarding a different action (is
it the dominance strategy or something else)?





8
Odds, Probabilities and Actions

We have come to the point where it will no longer be enough to work
with our intuitive notion of probability. If we want to go beyond toy
decision problems, like the one’s we’ve been covered, and model
decisions that are more like the ones we more frequently face, we’ll
need to have a sufficiently robust understanding of probability. For
example, one of the main things we’ll want to be able to do is update
our beliefs given new information, which effectively amounts to
knowing how to update probabilities.

Probabilities are a way of quantifying beliefs. It may seem impos-
sible to measure something as elusive and subjective as beliefs. But
some clever conceptual tools have been developed to do just that.

The key idea behind measuring a person’s belief about the
world is to figure out how willing they are to risk things that they
care about. To illustrate this idea we’re going to momentarily assume
that money is our measure of utility.

8.1 Odds and Fair Betting Rates

Here’s a roughly general observation of people’s behaviour: the more
confident someone is that some event is going to happen, the more
willing they are to bet.

Suppose S is some event that Bob and Ally care about. The event
might be a sports team winning a game, that it’s going to rain to-
morrow, that the stock price of some company will be higher by next
year, etc.

Let’s say Bob is more than 50% confident that S will happen. In
fact, let’s suppose that Bob would accept a deal that would pay him
$1 if S happens, but would cost him $2 if it doesn’t. Let’s say Ally
thinks Bob is wrong to be so confident and agrees to take Bob’s bet.
In effect, this means that Ally is willing to put $1 on the table for the
chance of winning the $2 that Bob is willing to put on the table. The
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stake is the sum of all the money on the table, in this case $1 + $2 =

$3. Whoever ends up being right gets to take the stake.1 1 Careful here. If Ally turns out to win
because S does not happen, she wins
the stake ($3), but since she contributed
$1 to it the amount she gains is $2.Bob’s fair betting rate can be expressed by dividing his potential

loss by the stake:

Betting Rate =
Potential Loss

Stake

=
$2

$2 + $1

=
2
3

.

Bob’s betting rate is 2/3, which is a reflection of how confident he
is that S will happen. And here’s the next move: that’s Bob’s personal
probability that S will happen, i.e. PrBob(S) = 2/3.

Bob’s fair odds is another way that betting is sometimes talked
about. To express Bob’s fair better rate in terms of odds, we take the
ratio of potential loss to potential win:

Odds = Potential Loss : Potential Win

= 2 : 1

The odds that Bob would accept are another reflection of his de-
gree of confidence. In fact, there is a handy way of linking up our
notion of expected value with odds and probabilities.

A fair bet is one in which the expected value is zero. That is, if
we weight the potential win by the probability of winning, and we
weight the potential loss by the probability of losing, the odds should
“cancel out” or “wash out”:

(2/3)($1) + (1/3)(−$2) = 0.

Here’s a helpful visual way of understanding the idea of a fair bet.
Notice first an inverse relationship between probabilities and payoffs
when it comes to risks (especially in gambling): events with really
high payoffs tend to have low probabilities, and likewise, the more
probable an event is the lower the payoffs tend to be. If the amount
of probability is like the width of a rectangle, and the payoff (or loss)
is like the height of a rectangle, then a fair bet will be one in which
the area of a rectangle that represents Bob winning will have the
same amount of area that represents Bob lossing.

To be clear, what Bob considers to be a fair bet might change. For
example, suppose Bob comes into some information that significantly
decreases his confidence that S will happen. Let’s say his confidence
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Figure 8.1: A bet that pays $1 if Bob
wins and costs $2 if he loses, is fair
when the purple and orange regions
have equal area: when the probability
of winning is 2/3.

goes all the way down to 10% (i.e. 1/10). Since his confidence went
down, he should be willing to risk less, that is, he should be willing
to stake much less. How much less? As a fair bet, Bob will want to
make sure that the expected value will be 0:

(1/10)($9) + (9/10)(−$1) = 0.

So for Bob to be willing make a bet with Ally give this new informa-
tion, Ally would need to be willing to put at least $9 in the stake for
Bob’s $1.

Notice how our visualization using rectangles will change for this
new scenario, but the two rectangles will still have the same area.

Here’s a General Recipe for quantifying a person’s probability
that a proposition S is true using the idea of fair bets:

1. Find a bet on S that they see as fair. Call the potential winnings W
and the potential losses L.

2. Because the bet is fair to their eyes, set the expected value of the
bet equal to zero:

[Pr(S)× W] + [(1 − Pr(S))×−L] = 0.
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Figure 8.2: A bet that pays $9 if Bob
wins and costs $1 if he loses is fair
when the probability of winning is
1/10.

3. Now solve for Pr(S):

(Pr(S)× W) + ((1 − Pr(S))×−L) = 0

(Pr(S)× W) + (−L) + (Pr(S)× L) = 0

(Pr(S)× W) + (Pr(S)× L) = L

Pr(S)× (W + L) = L

Pr(S) =
L

W + L
.

Notice that we have the formula for the fair betting rate again!
It’s helpful to memorize this formula so you don’t have to do the
derivation each time. But more important than that is knowing that
there is a recipe for getting from bets to personal probabilities.

8.2 Advantageous Bets

The general recipe we just developed uses the idea of fair bets (or
fair odds). The idea here is that a person would be willing to take
either side of the bet. Using the language of preferences: the person
is indifferent between the two options. What happens if betting rates
aren’t fair in the eyes of Bob? In that case Bob would no longer be
indifferent, he would want to take one side!

For example, let’s suppose that Bob is confident that S will hap-
pen, say by three to two odds, i.e. Pr(S) = 3/5. That means that,
from Bob’s perspective, for every $2 that Ally is willing to put in the
stake, he is willing to put in $3. That is his fair bet.2 Now consider 2 Notice: (3/5)($2) + (2/5)(−$3) = 0
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two scenarios:

• (Scenario 1) Ally is willing to give Bob even odds, i.e., she is will-
ing to put in $3 for every $3 that Bob puts in the stake (and as
before, if S happens then Bob wins the stake). So for the same
amount that Bob is willing to lose in his fair bet, in this scenario
he has the same probability of winning, but now the payoff for
winning is higher. From Bob’s perspective, his expected value is a
gain:

(3/5)($3) + (2/5)(−$3) = 0.6

So Ally’s offer would favor Bob and is advantageous (in his eyes).

• (Scenario 2) Ally is only willing to put in $1 for every $3 that Bob
puts in the stake (and as before, if S happens then Bob wins the
stake). So in order to win $2 from Ally in this scenario, he would
have to be willing to lose $6, which is twice the amount relative to
his fair better rate! From Bob’s perspective, his expected value is
now a loss:

(3/5)($1) + (2/5)(−$3) = −0.6

So here Ally’s offer would not be advantageous to Bob.

There’s an important lesson here. Just because a person is
willing to take a bet does not mean that they think it’s a fair bet.
Like in Scenario 1, Bob is willing to take bets that he perceives as
advantageous to him. But in Scenario 2, he would rather be in Ally’s
shoes! So when we’re measuring people’s personal probabilities,
we have to make sure that the bets that they are willing to take are
ones that they think are fair (i.e. the bet, from their perspective, isn’t
advantageous or disadvantageous).

There’s complications though. Recall that money doesn’t per-
fectly track utility, it is at best a very rough estimate. In previous
chapters we saw how gaining a dollar is not the same as losing a dol-
lar. Moreover, the utility of gaining/losing a dollar depends on how
much you already have.

Another complication is that we’re assuming that Bob is fol-
lowing the expected utility strategy. As we saw in the discussion of
paradoxes like the Allais paradox, we have some reason for think-
ing that people don’t follow it. So our way of measuring personal
probability isn’t perfect, but it’s still a significant advancement in
measuring something that we initially thought was purely subjective.
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But hold on. It’s not a defect of a camera when it won’t take pic-
tures in a dark room. Similarly, if someone isn’t following the ex-
pected utility formula, that says something about the person, not the
method by which we can measure personal probabilities.

Ought people to behave according to the expected utility for-
mula? According to the laws of probability and some assumptions
that connect beliefs with actions: yes we should. The arguments here
are known as Dutch Book arguments. Before we get to these argu-
ments, we need to briefly say at least informally what the laws (or
axioms) of probability are.

8.3 The Axioms of Probability and Dutchbooks

There are three standard axioms of probabilities. I’ll present them
informally here.

1. (Non-negativity) Probabilities can’t be less than zero, i.e., P(S) ≥
0.

2. (Normality) If we sum up the probabilities of all possible events,
we get 1. For example, if all the possible events for tomorrow
are Rainy, Cloudy, and Sunny, then the probability that tomor-
row is Rainy or Cloudy or Sunny is 1. Another example: if all the
possible winners in the race are numbered 1 through 7, then the
probability that one of them wins is 1.

3. (Finite Additivity) For mutually exclusive events, their disjunction
is additive. For example, suppose there’s a horse race with four
horses: Gumption, Gallifray, Tungsten, and Shadow. If one horse
wins, all the others lose (i.e., horse winnings are exclusive events).
So, if the probability of Shadow winning is 0.1, and the probably
of Tungsten winning is 0.2, then the probability of Shadow or
Tungsten winning is 0.3.

When we identify axioms of a theory, we can use those axioms to
define other constraints or features of the theory. For example, we
can define the probability for the negation of a proposition (i.e. that
an event will not occur), ¬X as:

P(¬X) = 1 − P(X)

As we’ve seen above, that means that fixing the probability of a
proposition automatically fixes the probability of its negation (and
vice versa). For example, if P(X) = 0.7 then P(¬X) = 0.3.
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This is a helpful feature. Suppose, for example, that we have a
lottery with 100 tickets. Each ticket is picked out by a proposition,
X1, X2, . . . , X100. The probability of wining a given ticket, Xi is

P(Xi) =
1

100
= 0.01

Since we have fixed the probability that Xi is true, this automatically
fixes the probability that it is false, or equivalently, that ¬Xi is true.
Formally,

P(¬Xi) = 1 − 0.01 = 0.99

This next claim builds on some logic that we will get to shortly,
but it’s worth making explicit now as it will play a central role in the
argument in the next section. Consider the exhaustive disjunction
of all mutually exclusive propositions (e.g., we think about ALL the
lottery tickets, and the rule is that when you win with ticket Xi that
means the other tickets did not win). This exhaustive and mutually
exclusive disjunction will be a tautology. In our lottery example:

P(X1 ∨ X2 ∨ . . . ∨ X100) = 1

In short, even if there is more than one event that we’re consider-
ing, the probabilities of all events have to sum to 1.3 3 We’are assuming that the events are

mutually exclusive and exhaustive.

The Dutchbook Argument says that you should accept the above
three axioms of probability because if you don’t then you allow for
the possibility of guaranteed loses of “fair bets’ ’ - bets that rationality
suggests would not be fair at all, but you would be unable to provide
reasons for not accepting them.4 4 The person that does accept the three

axioms of probability can say why the
bets are not fair because they violate
one or more of the axioms.

The Dutchbook argument can be stated formally, but it’s enough
for our purposes to illustrate the argument using the popular exam-
ple of horse racing. The following table lists all the names of four
horses in a race, including the odds and the implied probability of
each horse winning. In addition, the table lists the cost of a bet and
the corresponding payout if the horse wins.

Horse Odds Implied.Prob Bet Payout

Gumption 1:1 0.5 $100 $100

Gallifray 3:1 0.25 $50 $150

Tungsten 4:1 0.2 $40 $160

Shadow 9:1 0.1 $20 $180

TOTALS 1.05 $210 $200

Here’s what to notice from this table. Suppose you’re the bookie
and you get one person to bet for each horse. No matter which horse
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ends up winning, you as the bookie will pay out $200 from the stake
(the sum of the bets you received). But if we look at the total that
makes up the stake, that total is $210. The means as the bookie you
are guaranteed to make $10 on the race.

In point of fact, this is how real races are typically organized - and
this is a way for you to calculate how much is being “skimmed off
the top”. For the most part this isn’t really an issue because we’re
willing to let some amount of money to go to those who are orga-
nizing the event. But let’s put aside those types of considerations
and think instead of a set of bets that you and your friends would set
up that is regarded as fair, i.e., that there is no way for someone to
scheme and guarantee that they win some money. Each of you in the
group has the chance of losing or winning and no one is “skimming
off the top”.

Looking at the table again with this in mind, which of the prob-
ability axioms is being violated? Recall that the probability of the
exhaustive and mutually exclusive disjunction of the options should
sum to 1, but the total in the above table is 1.05. This is a violation of
Normality.

A violation of Normality where the sum of probabilities is
larger than 1 is good for a bookie because it guarantees they earn
money.

But a violation of Normality where the sum of probabilities
is smaller than 1 is bad for the bookie, but good for the gamblers!
Suppose, for example, that Shadow withdraws from the race. Now
the implied probabilities sum up to 0.95. If now a gambler bets on
all the remaining horses (but saves $20 because they don’t bet on
Shadow), the gambler is guaranteed to make a profit of $10. As you
can imagine, this rarely happens in real life, as bookies are quick to
adjust their betting offers to reflect these sorts of changes.

The point of the Dutchbook argument is to get you to appreciate
that if you think about probabilities in a way that does not respect
the three axioms, you are at risk of being put in a position where you
are guaranteed to lose. Of course lots of decisions under uncertainty
have the possibility of losing - that’s simply the nature of risk. But
those decisions also typically offer the possibilities of gains - that’s
why we might be interested in such decisions in the first place. What
the Dutchbook argument says is that if you violate any of the three
axioms, then included in the decisions you should be willing to ac-
cept are decisions where there is a guaranteed loss. It is thought that
no coherent account of rationality should find this acceptable. More-
over, such situations are easily avoided by someone who accepts the
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probability axioms, because the axioms provide them with a reason
to reject such decision offers.

If we’re convinced by the Dutchbook argument, which means we
agree that we should be striving to think about probabilities as pre-
scribed by the axioms, then this puts serious pressure on the idea
that Prospect Theory is a viable approach to capturing a more “hu-
man” kind of rationality. Recall that in response to weighting effects,
where people treat outcomes with low probabilities differently than
outcomes with high probabilities, Prospect Theory proposed a dif-
ferent function to capture how people reason across these contexts.
Such a function explicitly deviates from probability theory. Perhaps
as a purely descriptive theory that attempts to capture the systematic
ways that people go wrong, this is fine. But it would be misleading
to think of that account as closer to “human” rationality. After all, we
have the capacity to acknowledge the Dutchbook argument. To this
extent, at least when we are sober and closer to the better versions
of ourselves, we have the capacity to reason according to probability
theory.

8.4 Application

Examples from gambling help establish connections between prob-
abilities and our levels of confidence through the idea of odds. In
many real world applications, however, the probabilities of outcomes
are not as neat as they are in the case of gambling. Nevertheless, it is
possible to get some approximations; that is a large part of what the
field of statistics is about. We will not go into such details here. But
it is worth showing how we can connect some of the concepts so far,
and motivate by example what will spell out more abstractly in the
next chapter.

Let’s use an example where we estimate some probabilities from
frequency data, something that has important ties with medicine and
epidemiology. In the context of health it is common to represent data
in the form of what is called a two by two table (or 2x2 table). The idea
is to use the rows to represent “the exposed” options, like smoking or
not smoking, or like using a hand cream or not using a hand cream.
The columns represent “the diseased” and “not diseased” which in
our case is “rash continues” and “rash gets better”.5 5 In the smoking scenario the columns

could be “hypertension’ ’ and”without
hypertension’ ’ for example.

Here’s an example of what such data might look like. We’re sup-
posing that each cell represents the number of participants in a study
that met the pair of conditions. For example, there are 223 subjects
that used the hand cream and had the rash get better. There are 107

subjects that didn’t use the hand cream, but the rash got better any-
way. In total there are 330 subjects who’s rash got better. The cells
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under “Rash Continues” is read similarly. Notice that the cell in the
most bottom right corner is the total number of subjects in this study:
426.

Rash Gets Better (R) Rash Continues (nR) Total

Used Cream (C) 223 75 298

Didn’t Use (nC) 107 21 128

Total 330 96 426

Suppose we asked what the probability is that someone in our
sample used the hand cream.6 To calculate that, we would take the 6 Note that this question is restricted to

the sample, the subjects that were in the
study. If we want to make claims about
the larger population (people not in
the sample), we’d have to deploy some
inferential statistical tools that we have
not covered.

total number of people that use the hand cream (298) and divide
that number by the total number of subjects (426). This gives us
298/426 = 0.6995 (rounded to four decimal places). Similarly, we
can calculate the probability that a subject had their rash continue by
taking that number (96) and dividing it by the total number of sub-
jects (426). This gives us 96/426 = 0.2254. The other two probabilities
are calculated similarly: take the total from the row or column, and
divide by the total number of subjects (426).

The strategy we are deploying in the case of two by two tables has
its equivalent in the strategies we are about to discuss using truth
tables, and important tool in logic. We turn to that topic next.

Exercises

1. Suppose your friend has a coin with heads on one side and tails
on the other. You do not know, however, whether the coin is a fair
coin. All you are told is what the supposed odds are for heads and
tails. Recall that if odds in favor are n:m, then odds against are just
the inverse, m:n. In addition, recall that rewards are calculated by
using odds against. Your friend presents you with the following
table with partial information (the odds are odds against):

Face Odds Implied.Prob Bet Payout

Heads 1:3 X $12 Z
Tails 4:1 Y $5 W

a. What is X?
a. What is Y?
a. What is rewa rd Z?
a. What is rewa rd W?

a. Is i t more l ikely that the c oin wil l flip heads or tails?
a. What is the total of the imp lied pr obabilities (X+Y)?
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Face Odds Implied.Prob Bet Payout

a. Is y our frie nd offering you a fair bet? Why or why not?

2. Suppose this time we have a coin with a substantial flat edge
so that sometimes it spins and stays on the edge without falling
over. The coin is a fair coin in that heads and tails are equally
likely, but now there is also a positive probability that the coin
could land and stay on its edge. Suppose that the probabilities
are given by the table below. Using this information, what are the
odds supposed to be if you want to make sure that the wagers are
fair? And consequently, what should the rewards be as part of the
payouts?

Face Odds Implied.Prob Bet Payout

Heads X 0.4 $12 Z
Tails Y 0.4 $5 W
Edge V 0.2 $10 U

a. What is X?
a. What is Y?
a. What is V?
a. What is rewa rd Z?
a. What is rewa rd W?
a. What is rewa rd U?





9
Probabilities and Logic

In this chapter we’re going to approach probability more abstractly
and make connections to logic. We’re going to learn what it means
when we say that a probability function is a normalized measure over a
possibility space. There are three parts here: i) what is it for a function
to be a measure, ii) what is a normalized measure, and iii) what is
a possibility space. We will then use principles of logic to motivate
several rules for going about calculating probabilities.

9.1 Measures

A function is a mapping from an input to an output. There can be
many inputs that are mapped to one output, but to be a function
the mapping cannot assign more than one output to an input. We
typically think of functions as having numbers as inputs and outputs,
but that doesn’t have to be the case. In fact, as we’ll see, probability
functions will have a number as an output, but have non-numbers as
inputs.

Consider Scotland. Scotland is known for its whisky. There are six
regions (depending on who you ask) where whisky is distilled.

We can represent functions with tables. Let’s suppose we have
a function that takes distilling regions of Scotland as input and the
number of distilleries as output.

Input Output

Highlands 27

Speyside 62

Lowlands 3

Campbeltown 3

Islay 8

Islands 7



144 bert baumgaertner

Notice that there are two inputs that get mapped onto the same
output (Lowlands and Campbeltown both have 3 as their output),
but no input has any more or less than one output (e.g., it’s not the
case that Islay has both 8 and 7 distilleries).

What it means for a function to be a measure. First, the
function has to have non-negative numbers as output. Our example
meets this condition. Second, the input is some space that can have
‘regions’ or subsets. For example, we can organize our distilling re-
gions into those that are on the mainland (the first four in our table)
and those not on the mainland (i.e., Islay and Islands). Alternatively,
we could group the list into those whose name starts with one of the
first ten letters of the alphabet, those that start with ‘S’, and then the
rest. The specifics here don’t matter, just that different subsets are
possible.

Third, and this important property is called additivity, is that the
measure of a subset is the sum of the measures of the members that
make up the subset. For example, suppose we’re considering the
mainland distillery regions (the first four on our list). Then the num-
ber of distilleries on the mainland is just the sum of the distilleries
in the regions of Highlands, Speyside, Lowlands, and Campbeltown
(95).

It doesn’t really matter how we decide to group things. We could
decide that the ‘groups’ are just the members themselves. In that
case, there is just one number to consider. Or we could consider the
entire input as the subset (here ‘subset’ doesn’t indicate a strictly
smaller set - in set theoretic speak, we say that a set is a subset of it-
self). For example, the number of distilleries in Scotland is, according
to our table, 110 (i.e., the sum of each region).

Not all functions are measures. That is, some functions fail to be
additive. For example, let’s suppose we have a function from distill-
ing regions to the proportion of distilleries owned by multinational
companies (these numbers are not necessarily accurate).

Input Output (proportion of owned by corps.)

Highlands 0.6
Speyside 0.4
Lowlands 0.3

Campbeltown 0

Islay 0.25

Islands 0.4

Now let’s say we want to ask what proportion of the mainland dis-
tilleries are owned by multinational companies. We can’t do this just
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by looking at the table above. Adding up proportions won’t work:
it would lead to the absurd result that the proportion of mainland
distilleries owned by international companies is 1.3, that is, 130%. But
it’s impossible to own more than 100% of the mainland distilleries,
not to mention own more than 100% of anything! In general, propor-
tions do not meet the Additivity property and thus cannot serve as
the basis for measures. Typical examples of measures include length,
area, and volume.

9.2 Normalized Measures

The ‘universe’ of a function is the entire collection of inputs. In our
whisky example above, the universe of our function is the set of dis-
tillery regions in Scotland. We could have defined the universe of our
function differently. For example, we might have a different function
whose universe is the set of countries that have distilleries, including
Scotland, Ireland, the United States, Canada, Japan, etc. Also, the
universe of a function doesn’t have to correspond to physical space.
We could have a function with a universe of taste characteristics, like
sweet, smoky, earthy, rich, peppery, floral, etc. These are not located
in space like distilleries, but are rather properties of how a whisky is
perceived by taste.

A normalized measure function is a measure function that gives a
value of 1 to its universe. By doing so, the measure of every subset
can be understood as a proportion of the universe of the function.
Any measure can be ‘normalized’ by dividing the value of each out-
put by the value of the whole universe. For example, we can nor-
malize the function represented in the table below by dividing each
output number by the sum of all outputs (110). That would give us
the normalized values in the following table (rounded to four deci-
mal places).

Input Output Normalized

Highlands 27 0.2455

Speyside 62 0.5636

Lowlands 3 0.0273

Campbeltown 3 0.0273

Islay 8 0.0727

Islands 7 0.0636

Notice that this normalized function satisfies the property of being
additive. We can use the table to answer the question of what propor-
tion of all distilleries in Scotland are on the mainland by adding up



146 bert baumgaertner

the normalized values (keeping in mind that we will need to correct
for errors from having rounded the values). This works because the
sum of all the normalized values add up to 1. This is unlike the func-
tion represented in the previous table where the proportions do not
sum to 1.

Normalizing is an important step in taking data from the world
and turning it into probability functions. Sometimes the universe of a
function is not very well defined. In that case, it will not be possible
to normalize. So one important lesson for interpreting results of
some data is to understand what the relevant universe is supposed to
be.

9.3 Possibilities and Truth Tables

Let’s look at how to build a probability function. We’ll start with
a really simple example. Suppose we have a fair coin and you’re
going to flip it twice. In the first flip there are two possible outcomes:
heads (H) or tails (T). In the second flip there are again two possible
outcomes: H or T. For two flips of the coin then, there are a total of
four possible outcomes: HH, TH, HT, TT. We can keep track of these
in a table.

Flip 1 Flip 2

Outcome 1 H H
Outcome 2 T H
Outcome 3 H T
Outcome 4 T T

If we were to flip the coin a third time, we would have 8 possible
outcomes, which we can also collect in a table

Flip 1 Flip 2 Flip 3

Outcome 1 H H H
Outcome 2 T H H
Outcome 3 H T H
Outcome 4 T T H
Outcome 5 H H T
Outcome 6 T H T
Outcome 7 H T T
Outcome 8 T T T

If we were to flip the coin four times, there would 16 possibilities.
Each time we add an additional flip, the number of possibilities dou-
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bles in total. That is, where n is the number of coin flips, the total
number of possible outcomes is 2n.

Although this example is simple, it turns out to be a really fruitful
way of modeling lots of other examples that have the same structure.
For example, philosophers love logic and thinking about the world
in terms of statements or propositions that are either true or false.
Suppose we have three different propositions: P, Q, and R.

• P - "Bert drinks beer on Fridays.’ ’
• Q - "Mandy drinks wine on Fridays.’ ’
• R - "Florian drinks Scotch whisky on Fridays.’ ’

For simplicity, let’s assume that P is true if on the majority of
Fridays Bert drinks beer, and is false otherwise. Similarly for Q and
R. In the real world each of these propositions has a unique truth
value. Our interest here, however, is not just what is true, but the
space of possibilities. In this case, each proposition has the possibility
of being true (T) or false (F). Following the coin flip example, there
are in total eight possibilities. We can organize the possibilities in
what logicians call a truth table.

P Q R

F F F
T F F
F T F
T T F
F F T
T F T
F T T
T T T

These eight possibilities provide the foundation for creating a
probability function. What we first need to do is make sure that we
have a measure. Let’s say we give the following numbers to each row
in the truth table. Where the numbers come from is not important to
illustrate the point. But we can imagine, at least roughly speaking,
that the universe of the function is all Fridays, and the outputs rep-
resent the fraction of times Bert, Mandy, and Florian reported what
they had to drink. Notice that if we sum up the output values, we get
1. So, we have a measure, and it’s a normalized measure.

Probability P Q R

0.0002 F F F
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Probability P Q R

0.001 T F F
0.0008 F T F
0.008 T T F
0.08 F F T
0.1 T F T
0.01 F T T
0.8 T T T

We can now use this table to ask questions about the probabil-
ity that a proposition is true. To do that, we look at all the rows
where the proposition in question is true, and then add up the out-
put values. For example, suppose we are interested in the probability
that P is true (i.e., the probability that Bert drinks beer on a Friday).
Notice that P is true in rows 2, 4, 6, and 8. So we would compute
0.001 + 0.008 + 0.1 + 0.8 which is 0.909. That is, there is a 90.9% that
Bert drinks beer on a Friday.

We aren’t limited to asking the probabilities that a single proposi-
tion is true. Sometimes we’ll want to ask what the probability is that
both P and R is true, or that either P or R is true, or that P is false.
These are all examples of more complex sentences. Logicians have a
way of expressing these types of complex sentences. They call them
conjunctions, disjunctions, and negations, respectively. There are
some handy symbols used too:

‘P∧Q’ means ‘P and Q’ (also called conjunction) ‘P∨Q’ means ‘P or
Q’ (also called disjunction) ‘¬P’ means ‘not P’ (also called negation)

What’s really handy about these formulations is that the truth
values of the complex sentences can be fixed by the truth values of
the components. For example, the rule for conjunction is

P Q P∧Q

T T T
T F F
F T F
F F F

As you may guess, the truth table for negation is pretty simple.
The truth value is simply reversed.

P ¬P

T F
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P ¬P

F T

For disjunction the truth value of the whole sentence is given by
the following table.

P Q P∨Q

T T T
T F T
F T T
F F F

Notice that this is an inclusive interpretation of ‘or’ which means
that disjunction assumes by default that when both component sen-
tences are true then the whole sentence is true. For example, if you
are asked, “Do you want ketchup or mustard on your burger” there’s
nothing contradictory about saying that you want both. It’s easy
enough to express the exclusive version ‘or’ by say something like ‘P
or Q, and not both’.1 1 Formally we would write ‘(P∨Q) ∧

¬(P∧Q)’.We can use the truth table definitions of conjunction, disjunction,
and negation to determine the possible truth values of a complex
sentence. Consider for example the sentence ‘(P∨R) ∧ ¬Q’ which
can be interpreted as "On Fridays Bert drinks beer or Florian drinks
Scotch whisky, but Mandy doesn’t drink wine.’‘2 Using the rules 2 Note that “but’ ’ expresses”and’ ’ with

the addition of some flare to highlight a
contrast.

for ∧, ∨, and ¬ we get the table below. Notice that the whole com-
plex sentence is a conjunction, where the left conjunct is made out of
a disjunction (P∨R), and the right conjunct is made out of a nega-
tion (¬Q). So we have to work from the smallest parts up to the
larger parts, which means that we first evaluate’(P∨R)‘, then we
evaluate’¬Q’, and then we can do the column of truth values under
‘∧’ (which have been boldfaced to indicate these truth values are
under the main connective).

Probability P Q R (P∨R) ∧ ¬Q

0.0002 F F F F F T
0.001 T F F T T T

0.0008 F T F F F F
0.008 T T F T F F
0.08 F F T T T T
0.1 T F T T T T

0.01 F T T T F F
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Probability P Q R (P∨R) ∧ ¬Q

0.8 T T T T F F

Notice that the complex sentence is true on rows 2, 5, and 6. So as
an example, if P is true but Q and R are false, then P∨R) ∧ ¬Q is true
(this is row two).

If we want to calculate what the probability is that ‘(P∨R) ∧ ¬Q’
is true, all we need to do is add up the probabilities that correspond
to each row. This would be 0.001 + 0.08 + 0.1 = 0.181. That is, there
is an 18.1% chance that on Fridays Bert drinks beer or Florian drinks
Scotch whisky, but Mandy doesn’t drink wine.

It is worth pointing out several features about probabilities that
correspond to some important logical concepts: tautologies, equiv-
alence, entailment, and inconsistency. In fact, these will be directly
connected to the axioms that are typically used to define probabil-
ities. So it’s worth paying special attention here, as we’ll use these
results frequently going forward.

9.3.1 Tautologies

A tautology is a sentence that is true across every possibility. The
simplest example of this is a sentence ‘P∨ ¬P’ which says ‘Either
Bert drinks beers on Fridays or he doesn’t’. Yes, there are compli-
cations regarding what it means to satisfy the property ‘drinks beer
on Fridays’ - does it have to be at least more than half of all Fridays?
Note that whatever line or standard you pick, that will be the same
one for the negation of the sentence. So if the standard is that ‘Bert
drinks beers on Fridays’ is true just as long as he does on 75% of all
Fridays, then that sentence is false if he drinks them only on every
other Friday (i.e. 50% of them).

Notice that when we take the disjunction of a sentence and the
negation of that sentence, the column under the main connective (the
disjunction) will be true on every row. Let’s look at the truth table for
‘P∨ ¬P’ (notice we evaluate ‘¬P’ first, then the disjunction):

P P ∨ ¬P

T T F
F T T

Recall that we determined the probability that ‘P’ is true by adding
up all the probabilities in the rows were ‘P’ is true. If we use the
same table to determine the probability that ‘P’ is false (i.e., we add
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up all the numbers in the rows where ‘P’ is false) then we get the
following probabilities:

Probabilities P P ∨ ¬P

0.909 T T F
0.091 F T T

Now if we add up all the rows where ‘P∨ ¬P’ is true, which are
1 and 2 (and there are no other rows) we get a total of 1. This makes
sense upon some reflection. A tautology is always true, i.e., it is true
in every possibility. We also said that a probability is a normalized
measure, where the universe of the function added to 1. Since a
tautology has us adding up the probabilities across all the rows,
it’s not surprising that they sum to 1. In brief, the probability that a
tautology is true is 1.

9.3.2 Equivalence

Some statements are equivalent. What we mean by that is that they
say the same thing, even if they differ in how they say it. For exam-
ple, the sentence ‘Schnee ist weiss’ expresses the same proposition
that is said in ‘snow is white’.

In symbolic logic we can use truth tables to check whether two
sentences are equivalent. Consider the sentences ‘¬(P ∧ Q)’ and ‘¬P
∨ ¬ Q’. The first one reads as ‘It’s not the case that both Bert drinks
beer on Fridays and drinks wine’. Notice that the negation is being
applied to the conjunction. The second sentence reads ‘Either it’s
not the case that Bert drinks beer on Fridays or it’s not the case that
Bert drinks wine on Fridays’. Notice that this second sentence is a
disjunction that has two negations as component sentences.

In order to test whether two sentences are equivalent, we build a
truth table and evaluate each sentence. Then we check to see whether
the columns under the main connective of the sentences are identical.
If they are, that means that in every possibility their truth values
match, i.e., they are equivalent. When one sentence is true, so is
the other, and when one is false, so is the other. When we look at
the truth tables for ‘¬(P ∧ Q)’ and ‘¬P ∨ ¬ Q’ we see that they are
indeed equivalent:

P Q ¬(P ∧ Q) ¬P ∨ ¬ Q

T T F F
T F T T
F T T T
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P Q ¬(P ∧ Q) ¬P ∨ ¬ Q

F F T T

9.3.3 Validity and Entailment

One of the most important concepts in logic is that of validity. Valid-
ity is a property of arguments. An argument is a series of statements,
where one is designated the conclusion and the other statements the
premises (these are intended to support the conclusion). An argu-
ment is valid when if the premises are true, then the conclusion has
to be true. Put differently: an argument is valid when there is no pos-
sible way of making the conclusion false and the premises true. One
more way of putting it: there is no counterexample that makes the
premises true but the conclusion false.

Typically arguments have two or more premises. Modus Ponens,
for example, is a style of argument that has a conditional as one
statement and a second statement that affirms the antecedent of the
conditional. For example: If John lives in Idaho, then he lives in the
US. John does indeed live in Idaho. Therefore, John lives in the US.

Not all arguments have to have two or more premises, however.
Some arguments can have no premises at all! Tautologies are exam-
ples where if you make them the conclusion of an argument with
no premises, the argument is still, strictly speaking, valid. (You can’t
make the conclusion false! So there’s no counterexample.)

When an argument is valid, we say that the premises entail the
conclusion. In many cases we’ll look at arguments with just one
premise and one conclusion. So if A is the premise, B the conclusion,
and we have a valid argument, then we say that A entails B.

Truth tables can be used to check for entailment. What we do is
make sure there is no counterexample. Put differently, we make sure
that in every row where the premises are true, the conclusion is also
true.

Entailment is an important concept to logicians because it pre-
serves truth. That is, if the premises of an argument are true and you
proceed through a sequence of inferences, where each inferential step
is a valid one, that there is never a loss of truth. You’ll never go from
true premises to a false conclusion in a valid argument.

Something similar is the case if we think of probabilities instead
of truth. If A entails B, then the probability of B is at least as high as
the probability of A. We have this feature because when A entails B,
that means that B has to be true in all the possibilities where A is (if
that weren’t the case, we’d have a counterexample). So if B is true in
at least all the same places where A is, then the probability of B has
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to be at least as great as A.

9.3.4 Inconsistency (or Mutual Exclusivity)

A standard light switch is either on or off – it’s not both on and off
at the same time. Now imagine that you have two light switches
arranged so that when one is on it automatically turns the other one
off (and vice versa). In this arrangement, the light switches are never
both on at the same time, nor both off at the same time.

Similarly, when we say that two propositions are inconsistent, we
mean that whenever one is true the other is false, and when one is
false the other is true. Consider ‘¬(P ∧ Q)’ and ‘P ∧ Q’. When we
complete the truth tables for these, we see that they have opposite
truth values on each row.

P Q ¬(P ∧ Q) P ∧ Q

T T F T
T F T F
F T T F
F F T F

Whenever two propositions are inconsistent, then the probability
of the disjunction of those two propositions is the sum of each of
them. For example, suppose that A and B are inconsistent (that is,
suppose they are mutually exclusive). Then Pr(A∨B) = Pr(A) + Pr(B).

9.3.5 Logic Probabilities

So let’s think again about why the probability of a tautology is 1.
This is actually because of two features. First, A and ¬A are inconsis-
tent, so the probability of their disjunction (i.e. Pr(A∨ ¬A) ) is going
to be the sum of the probabilty of A and the probablity of ¬A. Sec-
ond, whatever the probability of A is, the probability of ‘¬A’ is going
to be 1 − Pr(A). This is because inconsistent propositions cannot have
probabilities that vary independently. If the probability of A is fixed,
this automatically fixes the probability of ‘¬A’ (and vice versa). And
since ‘¬A’ will cover all the remaining possibilities that ‘A’ did not
cover and the probability of the universe (i.e., all possibilities) is 1,
the probability of ‘¬A’ is 1 − Pr(A).

What about the case where A and B are not inconsistent? Is the
sum of their probabilities somehow connected to the features we have
been considering so far? Yes.

Let’s look at the following truth table. Notice that A and B are not
inconsistent, since there are rows where their truth values match. In
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the left most column we have variables representing the probability
of each row. If A and B meant ‘lands heads’ and ‘lands tails’ respec-
tively, this exercise would be much easier (since each row has a prob-
ability of 0.25). But we’re asking about whether there’s some general
pattern that we can express even if we don’t know the probabilities of
any row.

Probability A B A∧B A∨B

x1 T T T T
x2 T F F T
x3 F T F T
x4 F F F F

We already know how to calculate the following probabilities:

1. Pr(A) = x1 + x2 since these are the rows where A is true.
2. Pr(B) = x1 + x3 since these are the rows where B is true.
3. Pr(A∧B) = x1 since A∧B is true on just the first line
4. Pr(A∨B) = x1 + x2 + x3 since A∨B is true on lines 1-3.

The sum of the probabilities of A and B is then

Pr(A) + Pr(B) = x1 + x2 + x1 + x3

If we add lines 3 and 4, we get

Pr(A ∧ B) + Pr(A ∨ B) = x1 + x1 + x2 + x3

Notice that the sum of the probabilities is actually the same (after
rearranging the order): x1 + x1 + x2 + x3. And so we have the result
that

Pr(A) + Pr(B) = Pr(A ∧ B) + Pr(A ∨ B)

This is an important result, one that we will use often. Here’s a
different way of thinking about it, using an illustration. Let’s ask
how to calculate Pr(A∨B). As a first step, we would just add the
probabilities of A and B together, i.e., Pr(A) + Pr(B). However, we
don’t know that A and B are inconsistent, so it’s possible that A and
B could be true at the same time. So we need to make sure not to
double count the intersection. That is, the probability that both A
and B are true is already accounted for in Pr(A∨B), so when we add
the probabilities of A and B together, we need to subtract out the
probability that both are true at the same time. That what’s going on
when we rearrange the result we obtained above to get the following.

Pr(A ∨ B) = Pr(A) + Pr(B)− Pr(A ∧ B)
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9.4 Independence

There’s one additional concept that we’ll make use of going for-
ward, but it isn’t really a concept of deductive logic. Recall that two
propositions are exclusive (inconsistent) when they cannot be true
at the same time. So, if we flip a fair coin, landing Heads on the first
toss, H1 is exclusive of landing Tails on the first toss, T1. But landing
Heads on the first toss, H1 is not inconsistent with landing Tails on
the second toss, T2. In fact, if the coin is fair and nothing about the
first toss influences the outcome of the second toss, then we say that
the two tosses are independent.

Independence is an important concept of inductive logic. It says
that the truth of one proposition does not change the probability of an-
other proposition being true. It’s important not to confuse indepen-
dence with exclusivity.3 We’ll have to wait until we have the concept 3 Note that if A and B are exclusive,

then finding out that A is true does
change the probability that B is true, in
fact we know it would ahve to be false!
Hence, A and B are not independent.

of conditional probability to formally define independence, but a
rough intuition is good enough for now.

Independence allows us to introduce a rule for how to multiply
probabilities. For example, suppose we have a sequence of indepen-
dent tosses of our fair coin. How many possible sequences are there
of two tosses? We can express them using our logic of propositions:

• H1 & H2,
• T1 & T2,
• H1 & T2,
• T1 & H2.

How do we calculate the probability of these complex proposi-
tions? For example, how do we figure out the number Pr(H1 & H2) is
equal to?

Because the coin is fair, we know Pr(H1) = 1/2 and Pr(H2) = 1/2.
The probability of heads on any given toss is always 1/2, no matter
what came before. To get the probability of H1 & H2 we compute:

Pr(H1 & H2) = Pr(H1)× Pr(H2)

= 1/2 × 1/2

= 1/4.

And this is indeed correct, but only because the coin is fair and thus the
tosses are independent. In general, we have the following as general
rule of probability.

The Multiplication Rule If A and B are independent, then Pr(A & B) =
Pr(A)× Pr(B).
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Since our coin tosses are independent, we can multiply to calculate
Pr(H1 & H2) = 1/4. And the same reasoning applies to all four
possible sequences:

Pr(H1 & H2) = 1/4,

Pr(T1 & T2) = 1/4,

Pr(H1 & T2) = 1/4,

Pr(T1 & H2) = 1/4.

It’s Crucial to recognize that the multiplication rule only applies
to independent propositions. You’ll get the wrong answer if you’re
not careful about this. We’ll show shortly the kinds of mistakes one
might make and how to deal with propositions that aren’t indepen-
dent.

9.5 Summary

We’ve covered a lot of ground. Beware of simply trying to memorize
the following key takeaways. Knowing why we have the following
rules will be massively helpful in avoiding common errors of proba-
bilistic reasoning (some of which we already saw with the Dutchbook
argument).

• Pr(T) = 1 for every tautology T.
• Pr(C) = 0 for every contradiction C.
• Pr(A) = Pr(B) if A and B are logically equivalent.
• Pr(A ∨ B) = Pr(A) + Pr(B), if A and B are mutually exclusive

(i.e. inconsistent).
• Pr(A ∧ B) = Pr(A)× Pr(B), if A and B are independent.

9.6 Exercises

1. Proportions to Probabilities

Consider again our table about the proportion of distilleries that
are ownen by multinational companies (these are the first four
rows):

Input Output (proportion owned by corps.)

Highlands 0.6
Speyside 0.4
Lowlands 0.3

Campbeltown 0

Islay 0.25
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Input Output (proportion owned by corps.)

Islands 0.4

We said that we can’t determine what proportion of mainland
distilleries are owned by multinational companies just by looking
at the proportions for each region. Explain what information you
would need and how you would go about figuring this out.

2. What is the probability of each of the following propositions?

Numerous exercises have been bor-
rowed or adapted from Weisberg’s Odds
and Ends, Chapter 5. I will admit that
I lost track which exercises have come
from where.a. A ∧ (B ∧ ¬A)

b. ¬(A ∧ ¬A)

3. Give an example of each of the following.

a. Two statements that are mutually exclusive.
b. Two statements that are independent.

4. For each of the following, say whether it is true or false.

a. If propositions are independent, then they must be mutually
exclusive.

b. Independent propositions usually aren’t mutually exclusive.
c. If propositions are mutually exclusive, then they must be inde-

pendent.
d. Mutually exclusive propositions usually aren’t independent.

5. Assume Pr(A ∧ B) = 1/3 and Pr(A ∧ ¬B) = 1/5. Answer each of
the following:

a. What is Pr((A ∧ B) ∨ (A ∧ ¬B))?
b. What is Pr(A)?
c. Are (A ∧ B) and (A ∧ ¬B) independent?

6. Suppose A and B are independent, and A and C are mutually
exclusive. Assume Pr(A) = 1/3, Pr(B) = 1/6, Pr(C) = 1/9, and
answer each of the following:

a. What is Pr(A ∧ C)?
b. What is Pr((A ∧ B) ∨ C)?
c. Must Pr(A ∧ B) = 0?

7. Suppose a fair, six-sided die is rolled two times. What is is the
probability of it landing on the same number each time?

Hint: calculate the probability of it landing on a different number
each time. To do this, first count the number of possible ways the
two rolls could turn out. Then count how many of these are “no-
repeats.”
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8. The Addition Rule can be extended to three propositions. If A, B,
and C are all mutually exclusive with one another, then

Pr(A ∨ B ∨ C) = Pr(A) + Pr(B) + Pr(C).

Explain why this rule is correct. Would the same idea extend to
four mutually exclusive propositions? To five?

(Hint: there’s more than one way to do this. You can use an Euler
diagram. Or you can derive the new rule from the original one, by
thinking of A ∨ B ∨ C as a disjunction of A ∨ B and C.)

9. You have a biased coin, where each toss has a 3/5 chance of land-
ing heads. But each toss is independent of the others. Suppose
you’re going to flip the coin 1, 000 times. The first 998 tosses all
land tails. What is the probability at least one of the last two flips
will be tails?

10. There are 3 empty buckets lined up. Someone takes 4 apples
and places each one in a bucket. The placement of each apple is
random and independent of the others. What is the probability
that the first two buckets end up with no apples?

11. Suppose three cards are stacked in order: jack on top, queen in
the middle, king on the bottom. If we shuffle them randomly, what
is the probability the queen will still be in the middle when we’re
done? Assume shuffling makes every possible ordering of the
cards equally likely. Hint: how many ways are there to assign each
card a place in the stack? How many of these have the queen in
the middle?

12. The Conjunction Fallacy

Suppose ‘A’ means ‘Linda is a feminist’ and ‘B’ means ‘Linda is
a bank teller’. Consider the truth table for A and B, with corre-
sponding probabilities (Pr) for each assignment of truth values:

Pr A B

0.5 T T
0.2 F T
0.25 T F
0.05 F F

• Are A and B inconsistent? Why or why not?
• Are A and B equivalent? Why or why not?
• What is Pr(A)?
• What is Pr(B)?
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• What is Pr(A ∧ B)?

13. Atomic vs Conjunctions

Which of the following is true regarding the general relationship
between the probability of a single proposition X and the probabil-
ity of a conjunction that has X as a component?

a. Pr(X) ≥ Pr(X ∧ Y)
b. Pr(X) ≤ Pr(X ∧ Y)
c. Pr(X) = Pr(X ∧ Y)
d. None of the above. It depends on the probabilities given to X

and Y.

14. Disjunction

Consider the case of disjunction now. Which of the following is
true regarding the general relationship between the probability of
a single proposition X and the probability of a disjunction that has
X as a component?

a. Pr(X) ≥ Pr(X ∨ Y)
b. Pr(X) ≤ Pr(X ∨ Y)
c. Pr(X) = Pr(X ∨ Y)
d. None of the above. It depends on the probabilities given to X

and Y.

15. Conjunctions and Disjunctions

Let’s compare conjunctions and disjunctions. Which of the fol-
lowing is true regarding the general relationship between the
probability of a conjunction and the probability of a disjunction?

a. Pr(X ∧ Y) ≥ Pr(X ∨ Y)
b. Pr(X ∧ Y) ≤ Pr(X ∨ Y)
c. Pr(X ∧ Y) = Pr(X ∨ Y)
d. None of the above. It depends on the probabilities given to X

and Y.

16. Linda (again)

Linda is 31 years old, single, outspoken, and very bright. She ma-
jored in philosophy. As a student, she was deeply concerned with
issues of discrimination and social justice, and also participated
in anti-nuclear demonstrations. Which of the following is most
probable?

a. Linda is a bank teller
b. Linda is a bank teller and not a feminist
c. Linda is a bank teller and a feminist
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Conditional Probabilities and Likelihoods

Assuming you have a driver’s licence and the roads are relatively
clear, the chances of crashing your car are pretty low. But if you’re
drunk, the chances of crashing are much higher. Probabilities change
depending on the conditions.

We already have notation for symbolizing this idea. We use
P(A|B) to represent the probability that A is true given that B is true.
For example, to say the probability of A given B is 30%, we write:

P(A|B) = 0.3

When we condition probabilities in this way, we call them conditional
probabilities. Conditional probabilities play a central role in the re-
maining material, so let’s spend some time learning how to calculate
them.

10.1 Calculating Conditional Probability
Most of this presentation is a light
edit of Weisberg’s introduction to
calculating conditional probability (6.1).## Warning: Using ‘size‘ aesthetic for lines was deprecated in ggplot2 3.4.0.

## i Please use ‘linewidth‘ instead.

Figure 10.1: Conditional probability in a
fair die roll

Suppose I roll a fair, six-sided die behind a screen. You can’t see
the result, but I tell you it’s an even number. What’s the probability
it’s also a “high” number: either a 4, 5, or 6?

Maybe you figured the correct answer: 2/3. But why is that cor-
rect? Because, out of the three even numbers (2, 4, and 6), two of
them are high (4 and 6). And since the die is fair, we expect it to land
on a high number 2/3 of the times it lands on an even number.

This hints at a formula for P(A|B).

Conditional Probability

P(A|B) = P(A ∧ B)
P(B)

.
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In the die-roll example, we considered how many of the B possibil-
ities were also A possibilities. Which means we divided P(A ∧ B) by
P(B).

In fact, this formula is our official definition for the concept of
conditional probability. When we write the sequence of symbols
P(A|B), it’s really just shorthand for the fraction P(A ∧ B)/P(B).

## Warning: The ‘size‘ argument of ‘element_rect()‘ is deprecated as of ggplot2 3.4.0.

## i Please use the ‘linewidth‘ argument instead.

A B

Figure 10.2: Conditional probability is
the size of the A ∧ B region compared
to the entire B region.

In terms of an Euler diagram (Figure 10.2), the definition of con-
ditional probability compares the size of the purple A ∧ B region to
the size of the whole B region, purple and blue together. If you don’t
mind getting a little colourful with your algebra:

P(A|B) = ■
■+■

.

So the definition works because, informally speaking, P(A ∧ B)/P(B)
is the proportion of the B outcomes that are also A outcomes.

Dividing by zero is a common pitfall with conditional probability.
Notice how the definition of P(A|B) depends on P(B) being larger
than zero. If P(B) = 0, then the formula

The comedian Steven Wright once
quipped that “black holes are where
God divided by zero.”

P(A|B) = P(A ∧ B)
P(B)

doesn’t even make any sense. There is no number that results from
the division on the right hand side.1 1 There are alternative mathematical

systems of probability, where condi-
tional probability is defined differently
to avoid this problem. But we’ll stick
to the standard system. In this system,
there’s just no such thing as “the prob-
ability of A given B” when B has zero
probability.

In such cases we say that P(A|B) is undefined. It’s not zero, or
some special number. It just isn’t a number.

10.2 Application: Monty Hall Problem

Here we’ll show how the concept of conditional probability allows
us to solve the Monty Hall problem in the introduction. Here’s the
problem description:

On the show there are three doors (A, B, and C), one of which with a
prize behind it. You get to pick one of the doors. Let’s say you pick A.
The host now opens one of the other two doors that you did not pick.
But of course, the host doesn’t want to give away the game, so the door
they open will be empty. After opening one of the two doors (B or C)
the host asks, do you want to switch your choice or stick with your
current choice of A?

The intuitive answer, one that many mathematicians and statis-
ticians gave at the time, is that you should be indifferent between
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switching and staying with your choice of door A. Why? Because, the
(incorrect) reasoning goes, there’s two doors (A and whichever one
the host didn’t open) and an even chance between them of where the
prize is. Notice that this question is about an unconditional probabil-
ity.

The problem with this reasoning is that it ignores the events that
proceeded. The reasoning would be apt if the game show had you
picking between just two doors from the very start, and just because
the host reveals what’s behind the door you didn’t pick, they ask
you if you want to change your mind. But that’s not what’s going
on the in the Monty Hall problem. The real question is: should you
switch your choice from A given that the host opened a non-prize door
after your initial choice? Notice that this question is about a conditional
probability.2 2 What the host does is not independent

of your initial guess.If the prize is behind door A (the door you initially picked), then
the host has a choice between opening up door B or door C. But if
the prize isn’t behind door A, then the host is constrained. If the
prize is behind door B, then the host will open C. If the prize is be-
hind C, then the host will open B. What we’re reasoning about here
are paths of possible events.

The first kind of event is random, it’s just about the location of the
prize behind one of the three doors. So the probability of the prize
being behind door A is 1/3, and similarly for doors B and C. In other
words, your initial guess of door A has a 1/3 chance of being right.

A diagram can help (see Stage 1). Each arrow is a branch and has
a probability associated with it.

A

B

C

1/3

1/3

1/3

Figure 10.3: Stage 1 of tree diagram

The second kind of event is the host’s reveal of a non-prize door,
which is not random if your choice of door A is incorrect, and is ran-
dom if your choice of A is correct. Let’s build on the diagram above,
showing what the host’s options are (see Stage 2). When the prize is
behind door A (your guess) the host has two options, so we have two
branches, each with a probability of 1/2. When the prize is behind
door B, there’s only one thing the host can do (so that branch has a
probability of 1, which we don’t bother labeling). Same thing when
the prize is behind door C. A

B

C

Open B

Open C

Open C

Open B

1/3

1/3

1/3

1/2

1/2

Figure 10.4: Stage 2 of tree diagram

Now imagine you could play this game over and over again (thou-
sands if you like!), always making your first pick door A.3 One third

3 You can try it for yourself HERE.

of the time the prize will be behind door A, and of those times, half
of them the host opens door B and the other half door C. So that
means that the top path where the prize is behind door A and the
host opens door B will happen 1/6th of the time. Similarly for the
path where the prize is behind door A and the host opens C. For
the other two possibilities where the prize is behind door B or door
C, the host only has one option, so each of those paths will happen

http://www.rossmanchance.com/applets/2021/montyhall/Monty.html
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1/3rd of the time. Here’s our completed diagram with the probabili-
ties at the end of the paths.

A

B

C

Open B

Open C

Open C

Open B

p=1/6

p=1/6

p=1/3

p=1/3

1/3

1/3

1/3

1/2

1/2

Figure 10.5: Stage 3 of tree diagram

Of course you don’t actually know which path you are on, but
here’s what you do know: When the host opens door C, you are
more likely to be on the middle path (1/3) than you are on the path
above it (1/6). On the middle path the prize is behind door B, while
in the path above the prize is behind door A. Since the middle path
is the more likely one you’re on, you should switch your choice from
A to B! The same reasoning applies if the host had opened door B
instead - then you should switch your choice to C.

Notice that the probabilities at the end of the paths have to taken
into account all the branches that lead to that end point. So the prob-
ability of being on the branch that goes from A to Open B is condi-
tional on the previous branch that goes to A.

Here’s another example.4 4 Thanks to Weisberg’s Odds and Ends.

Suppose there are two urns of coloured marbles.

• Urn X contains 3 black marbles, 1 white.
• Urn Y contains 1 black marble, 3 white.

We flip a fair coin to decide which urn to draw from, heads for
Urn X and tails for Urn Y. Then we draw one marble at random. The
following tree diagram shows us the possible sequences of events.

H

T

B

W

B

W

3/8

1/8

1/8

3/8

1/2

1/2

3/4

1/4

1/4

3/4

Figure 10.6: Coin Flip and Urn Draws
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The probability of drawing a black marble on the top path is 3/4
because we are assuming the coin landed heads, and thus we’re
drawing from Urn X. If the coin lands tails instead, and we draw
from Urn Y, then the chance of a black marble is instead 1/4. So
these quantities are conditional probabilities:

Pr(B|H) = 3/4,

Pr(B|T) = 1/4.

Notice, though, the first branch in a tree diagram is different. In the
H-vs.-T branch, the probabilities are unconditional, since there are no
previous branches for them to be conditional on.

10.3 Independence

We can state independence in a rigorous way now. Informally
stated, we said that A and B are independent when the probability
of B (or the truth of B) does not affect the probability of A. The con-
cept of conditional probability allows us to say this explicitly using
probability theory:

Independence A is independent of B if Pr(A|B) = Pr(A) and Pr(A) >

0.

We will see more of this concept of independence, as it plays an
important role in calculating probabilities. But first, there is an im-
portant kind of conditional probability called a likelihood that is worth
taking some time to explain.

10.4 Likelihoods

Order matters when it comes to conditional probabilities. For ex-
ample, given that someone is a university student (S), the probability
that they are below 40 years old (F) is relatively high. However, given
that someone is below 40 years old, the probability that they are a
university student is low. In symbols, Pr(S|F) ̸= Pr(F|S).5 5 There are some cases where the two

are the same, but that’s rare.

Here’s another example.6 Suppose a university has 10,000 stu- 6 Borrowed from Weisberg’s Odds and
Ends, chapter 6.dents. Each is studying under one of four broad headings: Human-

ities, Social Sciences, STEM, or Professional. Under each of these
categories, the number of students with an average grade of A, B, C,
or D is listed in the following table. What is the probability a ran-
domly selected student will have an A average, given that they are
studying either Humanities or Social Sciences?
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Humanities Social Sciences STEM Professional

A 200 600 400 900

B 500 800 1600 900

C 250 400 1500 750

D 50 200 500 450

Pr(A | (H ∨ S) ) =
Pr(A ∧ (H ∨ S))

Pr(H ∨ S)

=
800/10, 000

3, 000/10, 000

= 4/15.

What about the reverse probability, that a student is studying either
Humanities or Social Sciences given that they have an A average?

Pr((H ∨ S) | A) =
Pr((H ∨ S) ∧ A)

Pr(A)

=
800/10, 000

2, 100/10, 000

= 8/21.

Notice how we get a different number now.

When we reason about hypotheses the order is particularly
important to get right, so much so that there is a particular term
that scientists will use to indicate the direction of the conditional
probability. This is called a likelihood. To understand it, we need to
make an important distinction between a hypothesis (or theory) and
evidence (or data or observation).

For example, suppose a company BestShoes claims that 96% of
their shoes outlast their competitor’s average shoe mileage of 300

miles. Furthermore, lets say that a running magazine decides to test
BestShoes’ claim by sending out 2,400 shoes from BestShoes to the
magazine’s subscribers. The magazine finds that 133 of the shoes
did not make it past 300 miles before falling apart. The hypothesis is
the claim that each shoe has a 0.96 probability of making it past 300

miles. The evidence is the claim that 2,277 of 2,400 shoes made it past
300 miles.7 7 Later we’ll see how to go about

quantifying the degree of support
(or lack there of) that the evidence gives
to the hypothesis.

It will be convenient for us to use the letter H when talking about
some hypothesis and E for some statement of evidence.

In general, a hypothesis is a statement about what is (or will be) the
case. Our beliefs about the world are similar to scientific hypotheses
(though perhaps not as technically stated) in the following sense:
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• i) there is the content of our belief, which is the statement (e.g. that
BestShoes outlast their competitors), and then there is

• ii) the degree of confidence that the statement is true, which we
previously learned to (indirectly) measure with the concept
of fair bets. We have been representing this degree of confi-
dence as a (personal) probability that a proposition is true,
e.g. Pr(H) = 0.75 means a person is willing to take 3:1 odds in
favor that H is true.

The idea of confidence as a degree of belief is not to be confused
with reasons for that level of confidence. Evidence is a kind of reason
that can be used to support a hypothesis. Evidence gives us reasons
for believing that a hypothesis is true: more evidence should make us
more confident.

The relationship between hypothesis and evidence can be tricky, in
part because there are two different directions that are not equivalent.
Recall that most of the time P(A|B) ̸= P(B|A). That same lesson
holds for hypothesis and evidence: P(H|E) ̸= P(E|H).8 8 In words: the probability that a hy-

pothesis is true given that the evidence
is true is not equal to the probability
that the evidence is true given that the
hypothesis is true.

Consider the following two conditional statements:

1. If we have the body of evidence E, how probable is it that hypoth-
esis H is true?

2. If hypothesis H is true, then how likely is it that we would see the
body of evidence E?

It is a bit of curious fact that a great deal of statistics focuses on
developing tools for understanding claim (2) when what we typically
want to know is claim (1). For example, in most statistics classes that
focus on hypothesis testing, the running intuition goes something
like this:

If the hypothesis we’re testing is true, then how unusual would this
result (the evidence) be?

The core idea behind all the statistical machinery (specifically
what’s called frequentist statistics) is that if the evidence would be
unusual below some threshold level (called α - “alpha”) under the
hypothetical assumption that the hypothesis were true, then that supports
or gives us reason to think that the hypothesis is true. If that sounds
confusing, it’s because it is. What we’re trying to say is something
like, “if the hypothesis were true, then this evidence we’re seeing
would be too much of a coincidence”. If that doesn’t help, you’re not
alone. Even scientists and statisticians have been found to misunder-
stand the idea.9 9 See https://jonathanweisberg.

org/vip/significance-testing.

html#significance-testing for an
excellent introduction with examples of
hypothesis testing.

The point we need to make for our purposes is this. When scien-
tists talk about likelihoods, they don’t mean just any kind of proba-
bility. What they mean is as follows.

https://jonathanweisberg.org/vip/significance-testing.html#significance-testing
https://jonathanweisberg.org/vip/significance-testing.html#significance-testing
https://jonathanweisberg.org/vip/significance-testing.html#significance-testing
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A likelihood is a conditional probability of seeing some evidence
given the assumption that a hypothesis is true, i.e. P(E|H).

10.5 Application: The Taxi Cab Problem

If there’s anything to take away from this chapter about how condi-
tional probabilities are used in (scientific) reasoning, it’s to make sure
you remember that P(E|H) ̸= P(H|E).

To illustrate this point, consider the following famous taxi cab
problem.

The experiment was first published
in 1971. It was performed by Daniel
Kahneman and Amos Tversky. Their
work on human reasoning reshaped the
field of psychology, and eventually won
a Nobel prize in 2002.

A cab was involved in a hit and run accident at night. Two cab
companies, the Green and the Blue, operate in the city. You are given
the following data:

1. 85% of the cabs in the city are Green and 15% are Blue.
2. A witness identified the cab as Blue. The court tested the reliabil-

ity of the witness under the same circumstances that existed on
the night of the accident and concluded that the witness correctly
identified each one of the two colors 80% of the time and failed
20% of the time.

What is the probability that the cab involved in the accident was
blue rather green?

Most people answer 80%, because the witness is 80% reliable. But
the right answer is 12/29, or about 41%.

How could the probability be so low when the witness is 80%
reliable? The short answer is: because blue cabs are rare. So most of
the time, when the witness says a cab is blue, it’s one of the 20% of
green cabs they mistakenly identify as blue.

A diagram can help.

Figure 10.7: The taxicab problem. There
are 15 blue cabs, 85 green. The dashed
region indicates those cabs the witness
identifies as "blue." It includes 80% of
the blue cabs (12), and only 20% of the
green ones (17). Yet it includes more
green cabs than blue.

Imagine there are just 100 cabs in town, 85 green and 15 blue.
The dashed blue line represents the cabs the witness identifies as
“blue,” both right or wrong. Because the witness is 80% accurate,
that line encompasses 80% of the blue cabs, which is 12 cabs. But it
also encompasses 20% of the green cabs, which is 17. That’s a total of
29 cabs identified as “blue,” only 12 of which actually are blue.

So out of the 29 cabs the witness calls “blue,” only 12 really are
blue. The probability a cab really is blue given the witness says so is
only 12/29, about 41%.

Another way to think about the problem is that there are two
pieces of information relevant to whether the cab is blue. The wit-
ness says the cab is blue, but also, most cabs are not blue. So there’s
evidence for the cab being blue, but also strong evidence against it.

https://en.wikipedia.org/wiki/Daniel_Kahneman
https://en.wikipedia.org/wiki/Daniel_Kahneman
https://en.wikipedia.org/wiki/Amos_Tversky
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The diagram shows us how to balance these two, competing pieces of
evidence and come to the correct answer.

What trips people up so much in the taxicab problem? Remem-
ber how order matters with conditional probability. In this problem,
we’re asked to find Pr(B|W), the probability the cab is blue given
that the witness says it is. That’s not the same as Pr(W|B), the prob-
ability the witness will say the cab is blue if it really is. The problem
tells us Pr(W|B) = 8/10, but it doesn’t tell us a number for Pr(B|W).
We have to figure that out.

It’s not that the two conditional probabilities aren’t re-
lated. The taxi cab problem highlights why we should keep the two
distinct, but we’d be wrong to think that they aren’t related at all. In
fact a very famous theorem called Bayes Theorem shows us a funda-
mental connection between them. We show that next.

10.6 Exercises

1. Answer each of the following:
Nearly all of these exercises come
directly from or are versions of those in
Chapter 6 of Weisberg’s Odds and Ends.

a. On a fair die with six sides, what is the probability of rolling a
low number (1, 2, or 3) given that you roll an even number.

b. On a fair die with eight sides, what is the probability of rolling
an even number given that you roll a high number (5, 6, 7, or
8)?

2. Suppose Pr(B) = 4/10, Pr(A) = 7/10, and Pr(B ∧ A) = 2/10.
What are each of the following probabilities?

a. Pr(A|B)
b. Pr(B|A)

3. Five percent of tablets made by the company Ixian have factory
defects. Ten percent of the tablets made by their competitor com-
pany Guild do. A computer store buys 40% of its tablets from
Ixian, and 60% from Guild.

This exercise and the next one are
based on very similar exercises from
Ian Hacking’s wonderful book, An
Introduction to Probability and Inductive
Logic.Draw a probability tree to answer the following questions.

a. What is the probability a randomly selected tablet in the store is
made by Ixian and has a factory defect?

b. What is the probability a randomly selected tablet in the store
has a factory defect?

c. What is the probability a tablet from this store is made by Ixian,
given that it has a factory defect?
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4. In the city of Elizabeth, the neighbourhood of Southside has lots
of chemical plants. 2% of Elizabeth’s children live in Southside,
and 14% of those children have been exposed to toxic levels of
lead. Elsewhere in the city, only 1% of the children have toxic
levels of exposure.

Draw a probability tree to answer the following questions.

a. What is the probability that a randomly chosen child from Eliz-
abeth lives in Southside and has toxic levels of lead exposure?

b. What is the probability that a randomly chosen child from
Elizabeth has toxic levels of lead exposure?

c. What is the probability that a randomly chosen child from Eliz-
abeth who has toxic levels of lead exposure lives in Southside?

5. Imagine 100 prisoners are sentenced to death. 70 of them are
housed in cell block A, the other 30 are in cell block B. Of the
prisoners in cell block A, 9 are innocent. Only 1 prisoner in cell
block B is innocent.

The law requires that one prisoner be pardoned. The lucky pris-
oner will be selected by flipping a fair coin to choose either cell
block A or B. Then a fair lottery will be used to select a random
prisoner from the chosen cell block.

What is the probability the pardoned prisoner comes from cell
block A if she is innocent? Answer each of the following to find
out.

I = The pardoned prisoner is innocent.
A = The pardoned prisoner comes from cell block A.

a. What is Pr(I|A)?
b. What is Pr(A ∧ I)?
c. What is Pr(I|B)?
d. What is Pr(B ∧ I)?
e. What is Pr(I)?
f. What is Pr(A|I)?
g. Draw a probability tree to visualize and verify your calcula-

tions.

6. Suppose A, B, and C are independent, and they each have the
same probability: 1/3. What is Pr(A ∧ B|C)?

7. If A and B are mutually exclusive, what is Pr(A|B)? Justify your
answer using the definition of conditional probability.

8. Which of the following situations is impossible? Justify your an-
swer.
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a. Pr(A) = 1/2, Pr(A|B) = 1/2, Pr(B|A) = 1/2.
b. Pr(A) = 1/2, Pr(A|B) = 1, Pr(A|¬B) = 1.

9. Is the following statement true or false: if A and B are mutually
exclusive, then Pr(A ∨ B|C) = Pr(A|C) + Pr(B|C). Justify your
answer.

10. Justify the second part of the “independence means multiply”
mantra: if Pr(A) > 0, Pr(B) > 0, and Pr(A ∧ B) = Pr(A)Pr(B),
then A is independent of B.

This and the remaining exercises
are more challenging and ask you to
think more deeply about conditional
probability and independence.Hint: start by supposing Pr(A) > 0, Pr(B) > 0, and Pr(A ∧

B) = Pr(A)Pr(B). Then apply some algebra and the definition of
conditional probability.

11. Justify the claim that independence is symmetric: if A is indepen-
dent of B, then B is independent of A.

Hint: start by supposing that A is independent of B. Then write
out Pr(A|B) and apply the definition of conditional probability.

12. Suppose A, B, and C are independent. Is it possible that Pr(A ∧
B ∧ C) = 0? If yes, give an example where this happens. If no,
prove that it cannot happen.

13. Suppose we have 4 apples and 10 buckets. We place each apple
in a random bucket; the placement of each apple is independent
of the others. Let Bij be the proposition that apples i and j were
placed in the same bucket.

a. Is B12 independent of B34?
b. Is B12 independent of B23?
c. Is every pair of Bij propositions independent?
d. Is every trio of Bij propositions independent?

14. Suppose we have a coin whose bias we want to learn, so we’re
going to flip it 3 times. We start out by assigning the same prob-
ability to each possible sequence of heads and tails. For example,
the sequences HTH and TTT are equally likely, as are all other
sequences.

a. Before we do our 3 flips, what is the probability of HTH?
b. What is the probability of heads on the third flip, given that the

first two flips land heads?

15. Prove that if A logically entails B, then Pr(B|A) = 1.

16. Suppose the following three conditions hold:

i. Pr(A) = Pr(¬A),
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ii. Pr(B|A) = Pr(B|¬A),
iii. Pr(B) > 0.

Must the following be true then?

iv. Pr(A|B) = Pr(A|¬B) = 1/2?

If yes, prove that (iv) must hold. If no, give a counterexample:
draw an Euler diagram where conditions (i)–(iii) hold, but not (iv).

17. Prove that the equation Pr(A|B)Pr(B) = Pr(B|A)Pr(A) always
holds. (Assume both conditional probabilities are well-defined.)

18. Prove that the following equation always holds, assuming the
conditional probabilities are well-defined:

Pr(A|B)
Pr(B|A)

=
Pr(A)

Pr(B)
.

19. Does the equation Pr(A|B) = Pr(¬B|¬A) always hold, assuming
both conditional probabilities are both well-defined? If yes, prove
that it does. If no, draw an eikosogram where it fails to hold.

20. Suppose an urn contains 30 black marbles and 70 white. We ran-
domly draw 5 marbles with replacement. Let A be the proposition
that 3 of the first 4 draws are black, and let B be the proposition
that the 5th draw is black. Calculate the following quantity:

Pr(A | B)
Pr(B | A)

Pr(B)
Pr(A)

.
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Base Rates, Priors, and Bayes Rule

The past chapter exposed you to the basic idea that underlies one of
the most important theorems of probability theory. This chapter will
explicitly introduce you to it: Bayes’ Theorem.

11.1 Bayes’ Theorem by Example

In the cab problem of the last chapter you were presented with two
pieces of information:

1. 85% of the cabs in the city are Green and 15% are Blue.
2. A witness identified the cab as Blue. The court tested the reliabil-

ity of the witness under the same circumstances that existed on
the night of the accident and concluded that the witness correctly
identified each one of the two colors 80% of the time and failed
20% of the time.

When asked about the probability that the cab involved in the ac-
cident was blue rather green, most of us are inclined to say 80%. The
correct answer, however, is about 41%. The reason why the probabil-
ity is lower than 80% is that blue cabs are rare. In other words, we
failed to account for the first piece of information.1 The reasoning we 1 When we fail to incorporate informa-

tion about base rates, it is known as the
base rate fallacy.

did to get to the correct answer (41%) reflects a thinking about both
pieces of information.

Let’s systematically walk through this problem using our con-
cepts of conditional and unconditional probabilities. What we want
to know is the probability that the cab involved in the accident was
blue (call this H) given that the witness said it was blue (call this E).
That is, we want to know Pr(H|E).

A base rate is the information we have that is not conditioned on
some other fact. In the cab problem, the base rate is contained in
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(1) the number of green cabs and the number of blue ones. Another
famous example of a base rate is the prevalence of some disease in a
population.

A prior probability is typically used to represent some base rate.
In the cab problem, for example, Pr(H) = 0.15 would be the prior
probability of the hypothesis (H) that the cab was blue.2 2 “Prior” because this is before we’re

thinking about new evidence. In the
taxi cab problem, the report from the
witness is the new evidence.What a likelihood does is tell us how much we should increase

or decrease that prior probability given some evidence. In the taxi
cab problem the evidence is the report from the witness. There are
actually two steps here, but both are embedded in the information in
(2) above. Let’s walk through both steps in turn.

The first step is to remember that Pr(E|H) is the probability that
the witness would report the cab was blue if the cab were in fact blue.
Given the information in (2), Pr(E|H) = 0.8.

The second step is to recognize that the witness might also report
that they saw a blue cab when the cab was in fact green. This is im-
portant because the accuracy of reports (or any kind of thing that
could count as evidence by “measuring” something) has two sides:
how often something is reported to be the case when in fact it is the
case, but also, how often is something reported to be the case when in
fact it is not the case.3 What we ultimately want here is to know how 3 Think of the boy who cried wolf.

probable it is that the witness will report blue regardless of what the
color of the car is. We can actually calculate this. The basic idea is to
use two likelihoods: the probability the witness reports blue when a
cab is blue (Pr(E|H) = 0.8), and the probability the witness reports
blue when a cab is not blue, but rather green (Pr(E|¬H) = 0.2). And
lest we forget our previous lesson, we need to weight both of these by
the frequency of blue and green cabs! In the end we then have:

Pr(E) = Pr(E|H) ∗ Pr(H) + Pr(E|¬H) ∗ Pr(¬H)

Bayes’ Theorem tells us how to combine all this information so that
we can calculate Pr(H|E):4 4 The theorem is named after Thomas

Bayes (1701-1761) who was both a
mathematician and an English minister.Bayes’ Theorem

Pr(H|E) = Pr(H) ∗ Pr(E|H)

Pr(E)

Why is this the way to combine the information? The are several
ways we can demonstrate this. One is to use a tree diagram for the
taxicab problem.5 5 Let’s walk through this together.
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Another way to demonstrate Bayes’ Theorem is to “chase” the
definitions and rules we’ve already learned. The definition of a con-
ditional probability is:

Pr(H|E) = Pr(H ∧ E)
Pr(E)

Notice that the numerator is a conjunction. To calculate the probabil-
ities of conjunctions, we multiply the probabilites of each conjunct if
they are independent. That is,

Pr(A ∧ B) = Pr(A)× Pr(B)

Remember that, if A and B are independent, then Pr(B|A) =

Pr(B). So if A and B are not independent, we’ll need to use the con-
ditional probability instead of the unconditional one. That is:

Pr(A ∧ B) = Pr(A|B)× Pr(B)

In the context of hypothesis and evidence, that means we replace the
numerator with:

Pr(H ∧ E) = Pr(E|H)× Pr(H)

Plug that in to the equation above with the definition of a conditional
probability, and we get:

Pr(H|E) = Pr(E|H)× Pr(H)

Pr(E)

There are four distinct elements for Bayes’ Theorem, and it’s con-
venient to have names from them, most of which we’ve now seen:

• Pr(H|E) is the posterior probability.
• Pr(H) is the prior probability.
• Pr(E|H) is the likelihood.
• Pr(E) is the “normalizing constant” - it’s the probability of seeing

the evidence across all the possible hypotheses.

The case of Pr(E) is an instance of what is known as The Law of
Total Probability. In general, it says

Law of Total Probability If 1 > Pr(B) > 0 then

Pr(A) = Pr(A|B)Pr(B) + Pr(A|¬B)Pr(¬B).

We will make use of this law enough that it’s worth remembering.
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11.2 Application: Conditionalization

The strength of Bayes’ Thereom (sometimes also known as Bayes’
Rule) becomes apparent when we add a philosophical principle or
rule about how we should update our beliefs as new evidence is
presented to us over time. The rule, in its simplest form, is that “yes-
terday’s posterior probability should be today’s prior probability”,
that is:

Simple Conditionalization

Prnew(H) = Prold(H|E)

Stated rigorously in words: suppose you don’t know if E is true
but I ask you to speculate and temporarily add E to your current
stock of beliefs. The number you assign to H on the speculation
that E is true should be the same as the number you assign in your
unconditional credence in H when the real world has provided you
with E.

Let’s work through an example. Let’s say we want to know
what the probability is that Jamey has some disease, D. Jamey was
recently given a test for the disease and we’ll assume it came back
positive, T. We want to know how confident Jamey should be that
she has the disease given a positive test. Should Jamey be very con-
fident now, or perhaps just a bit more confident? There are a lot of
assumptions that should go into Jamey’s learning, e.g., how reliable
are the tests? How frequent is the disease in the first place?

Conditionalization tells us how to relate the assumptions to these
kinds of questions. To start, when we’re using conditionalization,
we need to be mindful of our prior information and our posterior
information. We’ll use 1 for the prior time (before we got the test
result) and 2 for the time we got the test result. So what we’re asking
is what Pr2(D) is. Simple conditionalization says

Pr2(D) = Pr1(D|T)

Bayes’ Rule tells us what the right hand term of simple conditional-
ization is:

Pr1(D|T) = Pr1(D) ∗ Pr1(T|D)

Pr1(T)

There are three terms now for which we need some additional infor-
mation.

1. We need to know what Pr1(T|D) is, i.e., what the probability
is that a test comes back positive given that the patient has the
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disease (recall this is also called the likelihood). Let’s say that this
likelihood is 80%.6 That gives one piece of the puzzle: 6 Figuring out how accurate tests are

is itself a tricky matter, but the basic
idea is to use the tests on cases in which
we are highly confident, like in a lab
context, and then see how good the
tests are.

Pr1(D|T) = Pr1(D) ∗ 0.8
Pr1(T)

2. We need to know what Pr1(D) is, i.e., what is the baseline proba-
bility of having the disease (also known as our prior probability).
One way to estimate this is to find out what percentage of the
relevant demographic group has the disease. Let’s say that in
the demographic group to which Jamey belongs, 5 of patients
have the disease. So formally, Pr1(D) = 0.05 (which means
Pr1(¬D) = 0.95). We have another piece of the puzzle:

Pr1(D|T) = 0.05 ∗ 0.8
Pr1(T)

3. Last, we need to know Pr1(T), i.e., what is the probability that a
test comes back positive. We already know that when a patient has
the disease, then the test returns a positive result 80 of the time.
We represent this formally as Pr(T|D). But that by itself is not
enough information. We also need to know what percentage of
the time we get a false positive, i.e., a test result that says positive
when in fact the person does not have the disease. Let’s say this is
10 of the time. Or put differently, when the patient does not have
the disease, then the test returns a negative result 90 of the time.
Formally, we write this as Pr(T|¬D). The Law of Total Probability
says

Pr(T) = Pr(T|D)× Pr(D) + Pr(T|¬D)× Pr(¬D)

Notice that we have all these numbers already! Plugging them in
we get:

Pr(T) = 0.8 × 0.05 + 0.1 × 0.95 = 0.04 + 0.095 = 0.135

In other words, there’s a 13.5 chance that a test comes back posi-
tive.

Putting all the pieces together we have:

Pr2(D) = Pr1(D|T)

=
Pr1(D) ∗ Pr1(T|D)

Pr1(T)

=
0.05 ∗ 0.8

0.135
= 0.296

In words: there’s about a 30 chance that Jamey has the disease given
the positive test. That’s probably lower than you might expect, but as
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we learned before, the reason is because the base rate of the disease is
itself pretty low.7 7 If you want to see a version of this ex-

ample illustrated visually, see https://

www.youtube.com/watch?v=lG4VkPoG3ko
What if Jamey got a second test? And suppose that this second
test also comes back positive. Just like before, Simple Conditionaliza-
tion tells us to use prior information, but this time that information
includes the results from the first test (but before the second test). Re-
member the adage “yesterday’s posteriors are today’s priors”. In this
context, it’s “the result of updating beliefs after the first positive test
is now the prior for updating on the second positive test”. It doesn’t
have the same ring, but the idea is the same:

Pr3(D) = Pr2(D|T) = Pr2(D) ∗ Pr2(T|D)

Pr2(T)

Notice: if the tests are independent, then one of three terms will stay
the same, namely Pr2(T|D) = Pr1(T|D) = 0.8. So that’s an easy first
piece of the puzzle:

Pr3(D|T) = Pr2(D) ∗ Pr2(T|D)

Pr2(T)
=

Pr2(D) ∗ 0.8
Pr2(T)

Next, Simple Conditionalizing tells us to plug in an “updated”
prior, which is not Pr1(D) = 0.05, since that reflected only the base
rate. Instead, what we need to plug is in Pr2(D) = 0.296 - the poste-
rior we calculated after the first test. We then have:

Pr3(D|T) = Pr2(D) ∗ Pr2(T|D)

Pr2(T)
=

0.296 ∗ 0.8
Pr2(T)

The last part for Pr2(T) is a bit more subtle. It’s tempting to think
that Pr2(T) will also be the same as before, but if we recall how we
went about calculating it, we’ll notice that it contained information
about base rates in the form of priors:

Pr(T) = Pr(T|D)× Pr(D) + Pr(T|¬D)× Pr(¬D)

So if we are conducting the test on Jamey again (which we are), we
have to also update the probability that we’ll get a positive test given
the evidence we have obtained about Jamey. That is, while the like-
lihoods stay the same (the tests don’t change their accuracy from
person to person, at least we’re assuming), the priors do not. So
plugging in the new priors first, and then the likelihood like we had
before, we get:

Pr(T) = Pr(T|D)× Pr2(D) + Pr(T|¬D)× Pr2(¬D)

= Pr(T|D)× 0.296 + Pr(T|¬D)× 0.704

= 0.8 × 0.296 + 0.1 × 0.704

= 0.2368 + 0.0704

= 0.3072

https://www.youtube.com/watch?v=lG4VkPoG3ko
https://www.youtube.com/watch?v=lG4VkPoG3ko
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Notice that this number is higher than earlier when we didn’t have
any information about Jamey. This makes intuitive sense: it should
be more likely that we’ll get a positive test from Jamey since we’ve
accumulated some evidence that he has the disease.

So now that gives us all the puzzle pieces:

Pr3(D|T) = Pr2(D) ∗ Pr2(T|D)

Pr2(T)
=

0.296 × 0.8
0.3072

= 0.7708

After two positive tests, we now have a substantially higher probabil-
ity that Jamey has the rare disease. It is still far from certain. In fact,
it is still lower than the mere accuracy of the test, Pr(T|D) = 0.8. But
his confidence is moving in that direction.8 8 Exercise: will his confidence go above

Pr(T|D) = 0.8 for some set of evidence?

11.3 Advanced Application

The Problem of Uncertain Evidence emerges from the recogni-
tion that our observation of evidence is itself not certain.

Simple Conditionalization with Bayes’ Rule makes a simplifying
assumption that some authors call into question. The conditional
probability, P(H|E), says what the probability of H is if we were to
observe evidence E. In the conditionalization process, it is assumed
that when an observation is made, that the probability of the evi-
dence statement, Pi(E), which is somewhere between zero and one,
is updated and changed to Pj(E) = 1 (where i is a prior time and
j is a later time). That’s the idea from going from what we previ-
ously knew, Pi(E) to the process of learning, Pi(H|E), to having an
updated or posterior belief, Prj(H). And in fact, it is usually written
Prj(H) = Pi(H|E). The objection is that we can never be entirely
certain of any evidence. So to say that P(E) = 1 is to say that we
observed a logical truth or tautology!

This is called the Problem of Uncertain Evidence. That is, any empiri-
cal observation always has the possibility of being false - that is what
it means for the world to be contingent. We should therefore not as-
sign 1 to P(E). This problem is solved by Jeffrey Conditionalization.

Jeffrey Conditionalization assigns a degree of belief that some
evidential statement is true, rather than assigning it a level of cer-
tainty by giving it 1. It is similar to Bayes’ theorem, but we have to do
a bit more work by accounting for the probability that E is false (that
is, ¬E might be true):

Jeffrey Conditionalization

Pj(H) = Pi(H|E)× Pj(E) + Pi(H|¬E)× Pj(¬E)



180 bert baumgaertner

Notice that if we set Pj(E) = 1 then we get Simple Conditional-
ization again (the right term of the addition will cancel out because
Pj(¬E) = 0.

There is some debate about how well Jeffrey Conditionalization
can accommodate uncertain evidence generally. We won’t pursue
that here, but readers looking for more advanced discussion are en-
couraged to start with the Stanford Encyclopedia of Philosophy entry
on Bayesian epistemology: https://plato.stanford.edu/entries/
epistemology-bayesian/supplement.html#sec-jeffrey-general

Exercises

1. Suppose there are three colors of cabs and you are given the fol-
lowing information:

In the cab problem of the last chapter you were presented with
two pieces of information: i) 80% of the cabs in the city are Green,
10% are Blue, and 10% are Yellow. ii) A witness identified the cab
as Blue. The court tested the reliability of the witness under the
same circumstances that existed on the night of the accident and
concluded that the witness correctly identified each one of the
three colors 80% of the time and failed 20% of the time.

• What is the probability that the cab in the accident is Blue given
the witness report?

2. Consider our medical example with Jamey.

• If a third test comes back positive, what should his confidence
be that he has the disease?

• If the third test instead came back negative, what should his
confidence be?

• Notice that after enough positive tests, Jamey’s confidence will
be higher than the likelihood that a single test returns a positive
result given that the person has the disease (i.e. Pr(T|D)). Why
is that?

3. Suppose Paul is an introvert. Should you be more confident that
Paul is a librarian or in sales?

• What’s the base rate of librarians? What about people in sales?

– A brief and rough search for the US suggests that 0.05% of
people are librarians and 20% are in sales.

• What’s the probability of randomly selecting an introvert in the
US?

https://plato.stanford.edu/entries/epistemology-bayesian/supplement.html#sec-jeffrey-general
https://plato.stanford.edu/entries/epistemology-bayesian/supplement.html#sec-jeffrey-general
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– “Introversion” is loosely defined, so let’s say 25% of people
are introverts.

• What are the likelihoods of introverts given the library position?
What about given the sales position?

– Let’s say the likelhood of introversion of a librarian is 0.8 and
for a sales person it’s 0.01.

• Use Bayes’ Theorem to calculate the probability that Paul is a
librarian.

• Use Bayes’ Theorem to calculate the probability that Paul is a
sales person.

• Which is more likely? And how many times more?

4. Suppose you additionally learn that Paul also has an undergrad-
uate degree. Should you be more confident that Paul is a librarian
or in sales?

• State what, if anything, you can use from the previous calcula-
tions.

• What information do you need to collect to answer this ques-
tion?

• Collect some rough estimates of the information you need like
we did in the above question about Paul being an introvert.

• Again, use Bayes’ Theorem to calculate the probability that Paul
is a librarian.

• Again, use Bayes’ Theorem to calculate the probability that Paul
is a sales person.

• Which is more likely given that you know Paul is both intro-
verted and has an undergraduate degree? And how many times
more?

5. Recall an earlier problem we faced:

Five percent of tablets made by the company Ixian have factory de-
fects. Ten percent of the tablets made by their competitor company
Guild do. A computer store buys 40% of its tablets from Ixian, and
60% from Guild.

Use Bayes’ theorem to find Pr(I|D), the probability a tablet from
this store is made by Ixian, given that it has a factory defect?

6. Recall another problem we faced:

In the city of Elizabeth, the neighbourhood of Southside has lots of
chemical plants. 2% of Elizabeth’s children live in Southside, and
14% of those children have been exposed to toxic levels of lead.
Elsewhere in the city, only 1% of the children have toxic levels of
exposure.
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Use Bayes’ theorem to find Pr(S|L), the probability that a ran-
domly chosen child from Elizabeth who has toxic levels of lead
exposure lives in Southside?

7. The probability that Nasim will study for her test is 4/10. The
probability that she will pass, given that she studies, is 9/10. The
probability that she passes, given that she does not study, is 3/10.
What is the probability that she has studied, given that she passes?

8. At the height of flu season, roughly 1 in every 100 people have the
flu. But some people don’t show symptoms even when they have
it: only half the people who have the virus show symptoms.

Flu symptoms can also be caused by other things, like colds and
allergies. So about 1 in every 20 people who don’t have the flu still
have flu-like symptoms.

If someone has flu-like symptoms at the height of flu season, what
is the probability that they actually have the flu?

9. There is a room filled with two types of urns.

• Type A urns have 30 yellow marbles, 70 red.
• Type B urns have 20 green marbles, 80 yellow.

The two types of urn look identical, but 80% of them are Type A.
You pick an urn at random and draw a marble from it at random.

a. What is the probability the marble will be yellow?

Now you look at the marble: it is yellow.

b. What is the probability the urn is a Type B urn, given that you
drew a yellow marble?

10. A company makes websites, always powered by one of three
server platforms: Bulldozer, Kumquat, or Penguin. Bulldozer
crashes 1 out of every 10 visits, Kumquat crashes 1 in 50 visits, and
Penguin only crashes 1 out of every 200 visits.

This problem is based on Exercise
6 from p. 78 of Ian Hacking’s An
Introduction to Probability & Inductive
Logic.Half of the websites are run on Bulldozer, 30% are run on Kumquat,

and 20% are run on Penguin.

You visit one of their sites for the first time and it crashes. What is
the probability it was run on Penguin?

11. You and Carlos are at a party, which means there’s a 2/3 chance
he’s been drinking. You decide to experiment to find out: you
throw a tennis ball to Carlos and he misses the catch. Five minutes
later you try again and he misses again. Assume the two catches
are independent.
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When he’s sober, Carlos misses a catch only two times out of ten.
When he’s been drinking, Carlos misses catches half the time.

What is the probability that Carlos has been drinking, given that
he missed both catches?

12. The Queen Gertrude Hotel has two kinds of suites: singles have
one bed, royal suites have three beds. There are 80 singles and 20
royals.

In a single, the probability of bed bugs is 1/100. But every addi-
tional bed put in a suite doubles the chance of bed bugs.

If a suite is inspected at random and bed bugs are found, what is
the probability it’s a royal?

13. Willy Wonka Chocolates Inc. makes two kinds of boxes of choco-
lates. The “wonk box” has four caramel chocolates and six regular
chocolates. The “zonk box” has six caramel chocolates, two regu-
lar chocolates, and two mint chocolates. A third of their boxes are
wonk boxes, the rest are zonk boxes. They don’t mark the boxes.
The only way to tell what kind of box you’ve bought is by trying
the chocolates inside. In fact, all the chocolates look the same. You
can only tell the difference by tasting them. If you buy a random
box, try a chocolate at random, and find that it’s caramel, what is
the probability you’ve bought a wonk box?

14. A room contains four urns. Three of them are Type X, one is
Type Y. The Type X urns each contain 3 black marbles, 2 white
marbles. The Type Y urn contains 1 black marble, 4 white marbles.
You are going to pick an urn at random and start drawing marbles
from it at random without replacement. What is the probability the
urn is Type X if the first draw is black?

15. Suppose I have an even mix of black and white marbles. I choose
one at random without letting you see the colour, and I put it in a
hat.

This problem was devised by Lewis
Carroll, author of Alices Adventures in
Wonderland.

Then I add a second, black marble to the hat. If I draw one marble
at random from the hat and it’s black, what is the probability the
marble left in the hat is black?

16. Suppose you have a test for some disease, which always comes
up positive for people who have the disease: Pr(P|D) = 1. The
base-rate in the population for this disease is 1%. How low does
the false-positive rate Pr(P|¬D) have to be for the test to achieve
95% reliability, i.e. to have Pr(D|P) = .95?

17. Suppose the test for some disease is perfect for people who have
the disease, Pr(P|D) = 1. And it’s almost perfect for people who
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don’t have the disease: Pr(¬P|¬D) = 98/99. How high does
the base rate have to be for the test to be 99% reliable, i.e. to have
Pr(D|P) = .99?

18. An urn contains 4 marbles, either blue or green. The number of
blue marbles is equally likely to be 0, 1, 2, 3, or 4. Suppose we do
3 random draws with replacement, and the observed sequence is:
blue, green, blue. What is the probability the urn contains just 1
blue marble?
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